spark client mode cluster mode 区别 与选择

1、在我们使用spark-submit 提交spark 任务一般有以下参数

clike 复制代码
/bin/spark-submit \
  --class <main-class> \
  --master <master-url> \
  --deploy-mode <deploy-mode> \
  --conf <key>=<value> \
  ... # other options
  <application-jar> \
  [application-arguments]

其中 deplay-mode是针对集群而言,是指集群的部署模式,根据Driver主进程放在哪的两种方式。:client和cluster,默认是client,下面我们就详细研究一下这两种模式的区别

2、spark-submit 详细参数说明

参数名 参数说明

--master master 的地址,提交任务到哪里执行,例如 spark://host:port, yarn, local

--deploy-mode 在本地 (client) 启动 driver 或在 cluster 上启动,默认是 client

--class 应用程序的主类,仅针对 java 或 scala 应用

--name 应用程序的名称

--jars 用逗号分隔的本地 jar 包,设置后,这些 jar 将包含在 driver 和 executor 的 classpath 下

--packages 包含在driver 和executor 的 classpath 中的 jar 的 maven 坐标

--exclude-packages 为了避免冲突 而指定不包含的 package

--repositories 远程 repository

--conf PROP=VALUE 指定 spark 配置属性的值,

( 例如 -conf spark.executor.extraJavaOptions="-XX:MaxPermSize=256m")

--properties-file 加载的配置文件,默认为 conf/spark-defaults.conf

--driver-memory Driver内存,默认 1G

--driver-java-options 传给 driver 的额外的 Java 选项

--driver-library-path 传给 driver 的额外的库路径

--driver-class-path 传给 driver 的额外的类路径

--driver-cores Driver 的核数,默认是1。在 yarn 或者 standalone 下使用

--executor-memory 每个 executor 的内存,默认是1G

--total-executor-cores 所有 executor 总共的核数。仅仅在 mesos 或者 standalone 下使用

--num-executors 启动的 executor 数量。默认为2。在 yarn 下使用

--executor-core 每个 executor 的核数。在yarn或者standalone下使用

3、spark deploy model 对于程序容错的处理

在spark 程序中 ,task 有失败重试机制)

相关推荐
七夜zippoe2 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥2 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿3 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
爱敲代码的小鱼3 小时前
AJAX(异步交互的技术来实现从服务端中获取数据):
前端·javascript·ajax
忆~遂愿3 小时前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
米羊1213 小时前
已有安全措施确认(上)
大数据·网络
人道领域5 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
qq_12498707535 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Hello.Reader5 小时前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink
零售ERP菜鸟6 小时前
范式革命:从“信息化”到“数字化”的本质跃迁
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯