spark client mode cluster mode 区别 与选择

1、在我们使用spark-submit 提交spark 任务一般有以下参数

clike 复制代码
/bin/spark-submit \
  --class <main-class> \
  --master <master-url> \
  --deploy-mode <deploy-mode> \
  --conf <key>=<value> \
  ... # other options
  <application-jar> \
  [application-arguments]

其中 deplay-mode是针对集群而言,是指集群的部署模式,根据Driver主进程放在哪的两种方式。:client和cluster,默认是client,下面我们就详细研究一下这两种模式的区别

2、spark-submit 详细参数说明

参数名 参数说明

--master master 的地址,提交任务到哪里执行,例如 spark://host:port, yarn, local

--deploy-mode 在本地 (client) 启动 driver 或在 cluster 上启动,默认是 client

--class 应用程序的主类,仅针对 java 或 scala 应用

--name 应用程序的名称

--jars 用逗号分隔的本地 jar 包,设置后,这些 jar 将包含在 driver 和 executor 的 classpath 下

--packages 包含在driver 和executor 的 classpath 中的 jar 的 maven 坐标

--exclude-packages 为了避免冲突 而指定不包含的 package

--repositories 远程 repository

--conf PROP=VALUE 指定 spark 配置属性的值,

( 例如 -conf spark.executor.extraJavaOptions="-XX:MaxPermSize=256m")

--properties-file 加载的配置文件,默认为 conf/spark-defaults.conf

--driver-memory Driver内存,默认 1G

--driver-java-options 传给 driver 的额外的 Java 选项

--driver-library-path 传给 driver 的额外的库路径

--driver-class-path 传给 driver 的额外的类路径

--driver-cores Driver 的核数,默认是1。在 yarn 或者 standalone 下使用

--executor-memory 每个 executor 的内存,默认是1G

--total-executor-cores 所有 executor 总共的核数。仅仅在 mesos 或者 standalone 下使用

--num-executors 启动的 executor 数量。默认为2。在 yarn 下使用

--executor-core 每个 executor 的核数。在yarn或者standalone下使用

3、spark deploy model 对于程序容错的处理

在spark 程序中 ,task 有失败重试机制)

相关推荐
虚伪的空想家1 小时前
记录es收集日志报错问题as the final mapping would have more than 1 type[XXX,doc]
大数据·elasticsearch·搜索引擎·容器·kubernetes·log-pilot
数据与人工智能律师11 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
mykyle13 小时前
Elasticsearch-ik分析器
大数据·elasticsearch·jenkins
weixin_lynhgworld14 小时前
淘宝扭蛋机小程序系统开发:重塑电商互动模式
大数据·小程序
RPA+AI十二工作室16 小时前
影刀RPA_Temu关键词取数_源码解读
大数据·自动化·源码·rpa·影刀
Sui_Network17 小时前
探索 Sui 上 BTCfi 的各类资产
大数据·人工智能·科技·游戏·区块链
大数据张老师19 小时前
用 AI 做数据分析:从“数字”里挖“规律”
大数据·人工智能
博闻录20 小时前
以 “有机” 重构增长:云集从电商平台到健康生活社区的跃迁
大数据·重构·生活
nbsaas-boot1 天前
收银系统优惠功能架构:可扩展设计指南(含可扩展性思路与落地细节)
java·大数据·运维