基于yolov5 人体行为检测 对 跌倒 站立 蹲下 坐下 跑 五种行为检测目标检测

该项目使用YOLOv5深度学习框架来检测图像或视频中人体的五种基本行为:跌倒、站立、蹲下、坐下和跑步。YOLOv5(You Only Look Once v5)是一种高效的物体检测模型,能够快速准确地识别出图像中的目标。本项目具有以下特点:

  1. 图像检测:用户可以通过上传图片,系统将识别并标记出图像中人体的行为。
  2. 视频检测:支持实时视频流或本地视频文件的行为检测,并实时显示检测结果。

技术栈

  • YOLOv5:用于目标检测的核心框架。
  • Python:主要编程语言。
  • PyTorch:YOLOv5基于此深度学习框架构建。
  • OpenCV:用于视频处理和图像显示。
  • Flask:用于构建Web前端,让用户能够上传图片或视频。

关键代码

安装YOLOv5

首先需要安装YOLOv5及其依赖项。可以通过以下命令安装:

复制代码
1pip install -r requirements.txt

requirements.txt文件中包含了YOLOv5所需的依赖包。

下载预训练模型

下载YOLOv5预训练模型,可以使用以下命令:

复制代码
1wget https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt

训练定制化模型

由于YOLOv5的预训练模型通常是用于检测常见的物体类别,而不是特定的行为,你需要使用包含人体行为的数据集来训练一个定制化的模型。

  1. 数据准备:收集包含人体行为的图像数据,并进行标注。
  2. 模型配置:根据训练数据调整YOLOv5的配置文件。
  3. 训练模型:使用GPU加速训练过程,得到最终的模型权重。

图像检测

接下来是使用YOLOv5进行图像检测的代码示例:

复制代码
1import torch
2from PIL import Image
3
4# 加载预训练的模型
5model = torch.hub.load('ultralytics/yolov5', 'custom', path='path/to/custom_model.pt')
6
7# 加载图片
8img = Image.open('path/to/image.jpg')
9
10# 进行检测
11results = model(img)
12
13# 显示结果
14results.show()

视频检测

对于视频检测,使用以下代码:

复制代码
1import cv2
2from yolov5.detect import detect
3
4def video_detection(video_path):
5    cap = cv2.VideoCapture(video_path)
6    while cap.isOpened():
7        ret, frame = cap.read()
8        if not ret:
9            break
10        
11        # 转换为PIL图像格式
12        img = Image.fromarray(frame)
13        
14        # 进行检测
15        results = detect(model, img)
16        
17        # 显示检测结果
18        # 注意:你需要自己实现detect函数来适配YOLOv5的输出
19        # 也可以使用YOLOv5自带的display方法
20        results.render()  # 更新图像框
21        cv2.imshow('Detection Results', results.ims[0])
22        
23        if cv2.waitKey(1) & 0xFF == ord('q'):
24            break
25
26    cap.release()
27    cv2.destroyAllWindows()
28
29# 使用视频检测函数
30video_detection('path/to/video.mp4')

Web界面

为了搭建一个用户可以上传图片或视频的Web界面,使用Flask框架。以下是一个简单的Web应用示例:

复制代码
1from flask import Flask, render_template, request
2import os
3import torch
4from PIL import Image
5import cv2
6
7app = Flask(__name__)
8
9# 加载预训练的模型
10model = torch.hub.load('ultralytics/yolov5', 'custom', path='path/to/custom_model.pt')
11
12@app.route('/', methods=['GET', 'POST'])
13def index():
14    if request.method == 'POST':
15        if 'file' not in request.files:
16            return 'No file part'
17        file = request.files['file']
18        if file.filename == '':
19            return 'No selected file'
20        if file:
21            filename = file.filename
22            file_path = os.path.join('uploads', filename)
23            file.save(file_path)
24
25            # 图像检测
26            img = Image.open(file_path)
27            results = model(img)
28            
29            # 保存检测后的图像
30            results.save(save_dir='static/detections', exist_ok=True)
31            detection_path = os.path.join('static', 'detections', filename)
32
33            return render_template('index.html', detection=detection_path)
34
35    return render_template('index.html')
36
37if __name__ == '__main__':
38    app.run(debug=True)

注意事项

  1. 模型训练:为了使模型能够准确检测上述五种行为,你需要使用包含这些行为的数据集对模型进行训练。
  2. 环境配置:确保你的环境已经正确配置了PyTorch和其他必要的库。
  3. 性能优化:可以根据实际需求调整模型参数以优化性能。
相关推荐
聆风吟º3 小时前
CANN hccl 深度解析:异构计算集群通信库的跨节点通信与资源管控实现逻辑
人工智能·wpf·transformer·cann
狸奴算君3 小时前
告别机械回复:三步微调AI模型,打造会“读心”的智能客服
人工智能
七夜zippoe3 小时前
脉向AI|当豆包手机遭遇“全网封杀“:GUI Agent是通向AGI的必经之路吗?
人工智能·ai·智能手机·agent·gui
木非哲3 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
神的泪水3 小时前
CANN 系列底层篇:基于 shmem 实现 NPU 设备内存的高效共享
人工智能
神筆&『馬良』3 小时前
Foundation_pose在自己的物体上复现指南:实现任意物体6D位姿检测(利用realsense_D435i和iphone_16pro手机)
目标检测·ubuntu·机器人·视觉检测
皮卡丘不断更3 小时前
手搓本地 RAG:我用 Python 和 Spring Boot 给 AI 装上了“实时代码监控”
人工智能·spring boot·python·ai编程
浪子小院3 小时前
ModelEngine 智能体全流程开发实战:从 0 到 1 搭建多协作办公助手
大数据·人工智能
程序员打怪兽3 小时前
详解YOLOv8网络结构
人工智能·深度学习
Yuer20253 小时前
全国首例“AI 幻觉”侵权案判了:这不是 AI 准不准的问题,而是谁该为 AI 负责
人工智能·edca os·可控ai