目录
- 1、前言
- 2、相关方案推荐
-
- 我已有的PCIE方案
- [本博已有的 SDI 编解码方案](#本博已有的 SDI 编解码方案)
- 本博已有的FPGA图像缩放方案
- 3、详细设计方案
-
- 设计框图
- [SDI 输入设备](#SDI 输入设备)
- GS2971
- BT1120转RGB
- 纯Verilog图像缩放模块详解
- 纯Verilog图像缩放模块使用
- FDMA图像缓存
- RIFFA用户数据控制
- RIFFA架构详解
- [Xilinx 7 Series Integrated Block for PCI Express](#Xilinx 7 Series Integrated Block for PCI Express)
- RIFFA驱动及其安装
- QT上位机
- 工程源码架构
- PCIE上板调试注意事项
- FPGA工程编译注意事项
- 4、工程源码1详解-->Artix7-100T,SDI视频1920x1080缩放到1280x720转PCIE输出版本
- 5、工程源码2详解-->Artix7-100T,SDI视频1920x1080缩放到640x480转PCIE输出版本
- 6、工程源码3详解-->Kintex7-35T,SDI视频1920x1080缩放到1280x720转PCIE输出版本
- 7、工程源码4详解-->Kintex7-35T,SDI视频1920x1080缩放到640x480转PCIE输出版本
- 8、工程源码5详解-->Zynq7100,SDI视频1920x1080缩放到1280x720转PCIE输出版本
- 9、工程源码6详解-->Zynq7100,SDI视频1920x1080缩放到640x480转PCIE输出版本
- 10、工程移植说明
- 11、上板调试验证
- 12、福利:工程代码的获取
FPGA实现SDI视频缩放转PCIE传输,基于GS2971+RIFFA架构,提供6套工程源码和技术支持
1、前言
FPGA实现SDI视频编解码现状;
目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。本设计采用GS2971芯片解码方案;
FPGA实现PCIE数据传输现状;
目前基于Xilinx系列FPGA的PCIE通信架构主要有以下2种,一种是简单的、傻瓜式的、易于开发的、对新手友好的XDMA架构,该架构对PCIE协议底层做了封装,并加上了DMA引擎,使得使用的难度大大降低,加之Xilinx提供了配套的Windows和Linux系统驱动和上位机参考源代码,使得XDMA一经推出就让工程师们欲罢不能;另一种是更为底层的、需要设计者有一定PCIE协议知识的、更易于定制化开发的7 Series Integrated Block for PCI Express架构,该IP实现的是PCIe 的物理层、链路层和事务层,提供给用户的是以 AXI4-stream 接口定义的TLP 包,使用该IP 核,需要对PCIe 协议有清楚的理解,特别是对事务包TLP报文格式;本设计采用第二种方案,调用7 Series Integrated Block for PCI Express IP核,加上RIFFA架构实现PCIE通信,7 Series Integrated Block for PCI Express实现底层协议,RIFFA实现TLP报文组包、解包和轻量级DMA功能;本架构既有简单的测速实验,也有视频采集应用;
工程概述
本设计基于RIFFA架构架构实现SDI视频解码缩放转PCIE传输;
输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,也可以使用SD-SDI或者HD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到GS2971转接板,GS2971解码芯片将同轴串行的SDI视频解码为并行的BT1120格式视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用纯verilog实现的图像缩放模块对输入SDI视频进行缩放操作,本设计由1920x1080缩放为1280x720和640x480,你也可以缩放为自己需要的分辨率;然后使用本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;然后将采集视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;针对市面上主流的FPGA,本博客提供6套工程源码,具体如下:
现对上述6套工程源码做如下解释,方便读者理解:
工程源码1
开发板FPGA型号为Xilinx-->Xilinx-->Artix7--xc7a100tfgg484-2;输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到GS2971转接板,GS2971解码芯片将同轴串行的SDI视频解码为并行的BT1120格式视频;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用纯verilog实现的图像缩放模块对输入SDI视频进行缩放操作,本设计由1920x1080缩放为1280x720,你也可以缩放为自己需要的分辨率;然后使用本博主常用的FDMA图像缓存架构对SDI视频做2帧乒乓缓存,缓存介质为板载DDR3;然后将采集视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为1280x720@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;该工程适用于PCIE接口的SDI视频采集卡应用;
工程源码2
开发板FPGA型号为Xilinx-->Xilinx-->Artix7--xc7a100tfgg484-2;输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到GS2971转接板,GS2971解码芯片将同轴串行的SDI视频解码为并行的BT1120格式视频;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用纯verilog实现的图像缩放模块对输入SDI视频进行缩放操作,本设计由1920x1080缩放为640x480,你也可以缩放为自己需要的分辨率;然后使用本博主常用的FDMA图像缓存架构对SDI视频做2帧乒乓缓存,缓存介质为板载DDR3;然后将采集视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为640x480@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;该工程适用于PCIE接口的SDI视频采集卡应用;
工程源码3
开发板FPGA型号为Xilinx-->Kintex7--35T--xc7k325tffg676-2;输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到GS2971转接板,GS2971解码芯片将同轴串行的SDI视频解码为并行的BT1120格式视频;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用纯verilog实现的图像缩放模块对输入SDI视频进行缩放操作,本设计由1920x1080缩放为1280x720,你也可以缩放为自己需要的分辨率;然后使用本博主常用的FDMA图像缓存架构对SDI视频做2帧乒乓缓存,缓存介质为板载DDR3;然后将采集视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为1280x720@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;该工程适用于PCIE接口的SDI视频采集卡应用;
工程源码4
开发板FPGA型号为Xilinx-->Kintex7--35T--xc7k325tffg676-2;输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到GS2971转接板,GS2971解码芯片将同轴串行的SDI视频解码为并行的BT1120格式视频;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用纯verilog实现的图像缩放模块对输入SDI视频进行缩放操作,本设计由1920x1080缩放为640x480,你也可以缩放为自己需要的分辨率;然后使用本博主常用的FDMA图像缓存架构对SDI视频做2帧乒乓缓存,缓存介质为板载DDR3;然后将采集视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为640x480@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;该工程适用于PCIE接口的SDI视频采集卡应用;
工程源码5
开发板FPGA型号为Xilinx-->Zynq7100--xc7z100ffg900-2;输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到GS2971转接板,GS2971解码芯片将同轴串行的SDI视频解码为并行的BT1120格式视频;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用纯verilog实现的图像缩放模块对输入SDI视频进行缩放操作,本设计由1920x1080缩放为1280x720,你也可以缩放为自己需要的分辨率;然后使用本博主常用的FDMA图像缓存架构对SDI视频做2帧乒乓缓存,缓存介质为Zynq PL端DDR3,不建议使用PS端DDR3做缓存,因为Zynq的HP接口数据位宽仅有64bit,可能影响SDI视频传输效率;然后将采集视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为1280x720@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;该工程适用于PCIE接口的SDI视频采集卡应用;
工程源码6
开发板FPGA型号为Xilinx-->Zynq7100--xc7z100ffg900-2;输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到GS2971转接板,GS2971解码芯片将同轴串行的SDI视频解码为并行的BT1120格式视频;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用纯verilog实现的图像缩放模块对输入SDI视频进行缩放操作,本设计由1920x1080缩放为640x480,你也可以缩放为自己需要的分辨率;然后使用本博主常用的FDMA图像缓存架构对SDI视频做2帧乒乓缓存,缓存介质为Zynq PL端DDR3,不建议使用PS端DDR3做缓存,因为Zynq的HP接口数据位宽仅有64bit,可能影响SDI视频传输效率;然后将采集视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为640x480@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;该工程适用于PCIE接口的SDI视频采集卡应用;
免责声明
本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。
2、相关方案推荐
我已有的PCIE方案
我的主页有PCIE通信专栏,该专栏基于XDMA的轮询模式实现与QT上位机的数据交互,既有基于RIFFA实现的PCIE方案,也有基于XDMA实现的PCIE方案;既有简单的数据交互、测速,也有应用级别的图像采集传输,以下是专栏地址:
点击直接前往
此外,我的主页有中断模式的PCIE通信专栏,该专栏基于XDMA的中断模式实现与QT上位机的数据交互,以下是专栏地址:点击直接前往
此外,还有基于RIFFA架构的PCIE通信专栏,以下是专栏地址:
点击直接前往
本博已有的 SDI 编解码方案
我的博客主页开设有SDI视频专栏,里面全是FPGA编解码SDI的工程源码及博客介绍;既有基于GS2971/GS2972的SDI编解码,也有基于GTP/GTX资源的SDI编解码;既有HD-SDI、3G-SDI,也有6G-SDI、12G-SDI等;专栏地址链接如下:
点击直接前往
本博已有的FPGA图像缩放方案
我的主页目前有FPGA图像缩放专栏,改专栏收录了我目前手里已有的FPGA图像缩放方案,从实现方式分类有基于HSL实现的图像缩放、基于纯verilog代码实现的图像缩放;从应用上分为单路视频图像缩放、多路视频图像缩放、多路视频图像缩放拼接;从输入视频分类可分为OV5640摄像头视频缩放、SDI视频缩放、MIPI视频缩放等等;以下是专栏地址:
点击直接前往
3、详细设计方案
设计框图
工程详细设计方案框图如下:
SDI 输入设备
SDI 输入设备可以是SDI相机,代码兼容HD/SD/3G-SDI三种模式;SDI相机相对比较贵,预算有限的朋友可以考虑用HDMI转SDI盒子模拟SDI相机,这种盒子某宝一百块左右;当使用HDMI转SDI盒子时,输入源可以用笔记本电脑,即用笔记本电脑通过HDMI线连接到HDMI转SDI盒子的HDMI输入接口,再用SDI线连接HDMI转SDI盒子的SDI输出接口到FPGA开发板,如下:
GS2971
本设计采用GS2971芯片解码SDI,GS2971不需要软件配置,硬件电阻上下拉即可完成配置,本设计配置为输出BT1120格式视频,当然,你在设计电路时也可以配置为输出CEA861格式视频;GS2971硬件架构如下,提供PDF格式原理图:
BT1120转RGB
BT1120转RGB模块的作用是将SMPTE SD/HD/3G SDI IP核解码输出的BT1120视频转换为RGB888视频,它由BT1120转CEA861模块、YUV422转YUV444模块、YUV444转RGB888三个模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
纯Verilog图像缩放模块详解
本设计图像缩放模块使用纯Verilog方案,功能框图如下,由跨时钟FIFO、插值+RAM阵列构成,跨时钟FIFO的目的是解决跨时钟域的问题,比如从低分辨率视频放大到高分辨率视频时,像素时钟必然需要变大,这是就需要异步FIFO了,插值算法和RAM阵列具体负责图像缩放算法层面的实现;
插值算法和RAM阵列以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
图像缩放模块代码架构如下:模块的例化请参考工程源码的顶层代码;
图像缩放模块FIFO的选择可以调用工程对应的vivado工具自带的FIFO IP核,也可以使用纯verilog实现的FIFO,可通过接口参数选择,图像缩放模块顶层接口如下:
c
module helai_video_scale #(
//---------------------------Parameters----------------------------------------
parameter FIFO_TYPE = "xilinx", // "xilinx" for xilinx-fifo ; "verilog" for verilog-fifo
parameter DATA_WIDTH = 8 , //Width of input/output data
parameter CHANNELS = 1 , //Number of channels of DATA_WIDTH, for color images
parameter INPUT_X_RES_WIDTH = 11 //Widths of input/output resolution control signals
)(
input i_reset_n , // 输入--低电平复位信号
input [INPUT_X_RES_WIDTH-1:0] i_src_video_width , // 输入视频--即缩放前视频的宽度
input [INPUT_X_RES_WIDTH-1:0] i_src_video_height, // 输入视频--即缩放前视频的高度
input [INPUT_X_RES_WIDTH-1:0] i_des_video_width , // 输出视频--即缩后前视频的宽度
input [INPUT_X_RES_WIDTH-1:0] i_des_video_height, // 输出视频--即缩后前视频的高度
input i_src_video_pclk , // 输入视频--即缩前视频的像素时钟
input i_src_video_vs , // 输入视频--即缩前视频的场同步信号,必须为高电平有效
input i_src_video_de , // 输入视频--即缩前视频的数据有效信号,必须为高电平有效
input [DATA_WIDTH*CHANNELS-1:0] i_src_video_pixel , // 输入视频--即缩前视频的像素数据
input i_des_video_pclk , // 输出视频--即缩后视频的像素时钟,一般为写入DDR缓存的时钟
output o_des_video_vs , // 输出视频--即缩后视频的场同步信号,高电平有效
output o_des_video_de , // 输出视频--即缩后视频的数据有效信号,高电平有效
output [DATA_WIDTH*CHANNELS-1:0] o_des_video_pixel // 输出视频--即缩后视频的像素数据
);
FIFO_TYPE选择原则如下:
1:总体原则,选择"xilinx"好处大于选择"verilog";
2:当你的FPGA逻辑资源不足时,请选"xilinx";
3:当你图像缩放的视频分辨率较大时,请选"xilinx";
4:当你的FPGA没有FIFO IP或者FIFO IP快用完了,请选"verilog";
5:当你向自学一下异步FIFO时,,请选"verilog";
6:不同FPGA型号对应的工程FIFO_TYPE参数不一样,但选择原则一样,具体参考代码;
2种插值算法的整合与选择
本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:
c
input wire i_scaler_type //0-->bilinear;1-->neighbor
通过输入i_scaler_type 的值即可选择;
输入0选择双线性插值算法;
输入1选择邻域插值算法;
代码里的配置如下:
纯Verilog图像缩放模块使用
图像缩放模块使用非常简单,顶层代码里设置了四个参数,举例如下:
上图视频通过图像缩放模块但不进行缩放操作,旨在掌握图像缩放模块的用法;如果需要将图像放大到1080P,则修改为如下:
当然,需要修改的不仅仅这一个地方,FDMA的配置也需要相应修改,详情请参考代码,但我想要证明的是,图像缩放模块使用非常简单,你都不需要知道它内部具体怎么实现的,上手就能用;
FDMA图像缓存
FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中再读出送RIFFA模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以AXI4内部代码,以简单地像使用FIFO那样操作AXI总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为2帧乒乓缓存;图像缓存模块代码架构如下:
RIFFA用户数据控制
RIFFA用户数据控制模块的功能为产生读视频控制信号,控制视频读出并写入RIFFA模块;代码里设置了状态机,首先接收RIFFA模块的读数据请求,然后生成读视频控制信号控制视频读出,再根据RIFFA用户写时序将视频写入RIFFA,当写完一帧图像后再回来初始状态,由此形成循环;代码架构如下:
RIFFA架构详解
本设计使用的RIFFA 版本为RIFFA1.0;
RIFFA (Reusable Integration Framework for FPGA Accelerators) 是一个简单的框架,用于通过 PCI Express 总线将数据从主机 CPU 传输到 FPGA。该框架需要一个支持 PCIe 的工作站和一个带有 PCIe 连接器的主板上的 FPGA。RIFFA支持Windows和Linux,Altera和Xilinx,并绑定了C / C++,Python,MATLAB和Java。在软件方面有两个主要功能:数据发送和数据接收。这些函数通过 C/C++、Python、MATLAB 和 Java 中的用户库公开。该驱动程序支持每个系统多个 FPGA(最多 5 个)。软件绑定适用于 Linux 和 Windows 操作系统。用户只需编写几行代码即可与FPGA IP核进行通信。在硬件方面,用户访问具有独立发送和接收信号的接口。这些信号通过FIFO接口提供交易握手和第一个单词,用于读取/写入数据。无需了解总线地址、缓冲区大小或 PCIe 数据包格式。只需在FIFO接口上发送数据,在FIFO接口上接收数据即可。RIFFA不依赖于PCIe桥接器,因此不受网桥实现的限制。相反,RIFFA 直接与 PCIe 端点配合使用,并且运行速度足够快,使 PCIe 链路饱和。软件和硬件界面都得到了极大的简化。RIFFA架构如下:
RIFFA纯verilog代码架构如下:
复杂的代码架构需要长时间的品读才能消化,代码中提供了注释,感兴趣的可以去仔细研读并修改为自己项目需要的情景,对于普通开发者而言,其实只需要掌握RIFFA的用户逻辑即可完成数据读写操作,至于TLP包的封装与解包等操作,代码中已经做好了,一般不需要修改,除非需要定制功能和性能优化外;RIFFA用户逻辑接口及其详细注释如下:该接口位于riffa_wrapper.v;
RIFFA 框架不依赖 PCIe Bridge ,因此它不受桥连接的控制,这就实现了PCIe 通信链路的高带宽。下图显示了使用 32 位,64 位以及 128 位接口的RIFFA 框架性能图,图中的实线为理论上最大的带宽值,虚线为可实现的最大带宽值。PCIe Gen1 以及 PCIe Gen2 都是使用 8B/10B 编码方式,理论上的最大带宽利用率为 80%,在下图中我们可以看出在使用 32 位,64 位接口的情况下,RIFFA 框架可以实现理论上的最大带宽利用率 80%左右;在 128 位接口的情况下最大带宽利用率为 76%左右;
以PCIEX4为例,RIFFA模块资源消耗如下:
Xilinx 7 Series Integrated Block for PCI Express
7 Series Integrated Block for PCI Express是Xilinx官方推出的集成在FPGA内部的PCIE硬核IP;主要实现的是PCIe 的物理层、链路层和事务层,提供给用户的是以 AXI4-stream 接口定义的TLP 包,使用该IP 核,需要对PCIe 协议有清楚的理解,特别是对事务包TLP报文格式;7 Series Integrated Block for PCI Express例化使用十分简单,只是配置项比较多,但大部分保持默认即可,一般也用不到那么多功能,最主要的配置项如下:
7 Series Integrated Block for PCI Express在代码中调用如下:
RIFFA驱动及其安装
本设计提供RIFFA驱动源码,该源码既包括Windows也包括Linux,并提供Windows下的驱动安装可执行文件,如下:
Windows下驱动安装步骤如下:友情提示,Windows下驱动秩序安装一次即可;
第一步:使系统禁用签名并进入测试模式,方法如下:
也可百度其他方法实现上述目的,完成后电脑屏幕右下角应有如下显示:
第二步:修改可执行文件的兼容性,方法如下:
第三步:安装驱动,方法如下:
驱动装好后,下载FPGA工程bit,然后重启电脑,打开我的电脑-->管理-->设备管理器,应看到如下设备:
QT上位机
PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;QT上位机源码如下:
电脑端接收到 FPGA 开发板传来的数据是用户应用程序通过调用库函数fpga_rec才开始接收来自 FPGA 开发板的读请求,然后电脑端将数据分包接收;上位机运行样式如下:
工程源码架构
工程源码由Bolck Design设计和模块例化组成,Bolck Design主要为基于FDMA架构的图像缓存;模块例化则为包括Bolck Design在内的整体代码架构;本博客提供6套Vivado工程源码,以工程源码1为例Bolck Design设计如下,其他工程与之类似:
以工程源码1为例,综合后的工程源码架构如下:
PCIE上板调试注意事项
1:必须先安装RIFFA-PCIE驱动,详情请参考第3章节的《RIFFA驱动及其安装》,驱动只需安装一次;
2:下载FPGA工程bit后需要重启电脑,电脑才能识别到RIFFA-PCIE驱动;程序固化后也需要重启电脑;
3:FPGA板卡插在主机上后一般不需要额外供电,如果你的板子元器件较多功耗较大,则需要额外供电,详情咨询开发板厂家,当然,找我买板子的客户可以直接问我;
4:PCIE调试需要电脑主机,但笔记本电脑理论上也可以外接出来PCIE,详情百度自行搜索一下,电脑主机PCIE插槽不方便操作时可以使用延长线接出来,某宝有卖;
FPGA工程编译注意事项
由于RIFFA源码包含的头文件众多,所以在编译工程之前,必须设置全局包含文件,否则编译器找不到头文件导致报错,设置如下:
4、工程源码1详解-->Artix7-100T,SDI视频1920x1080缩放到1280x720转PCIE输出版本
开发板FPGA型号:Xilinx-->Artix7--xc7a100tfgg484-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:PCIE2.0,分辨率1280x720@60Hz;
SDI视频解码方案:GS2971芯片解码方案;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:FDMA图像缓存+DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X2,5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
5、工程源码2详解-->Artix7-100T,SDI视频1920x1080缩放到640x480转PCIE输出版本
开发板FPGA型号:Xilinx-->Artix7--xc7a100tfgg484-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:PCIE2.0,分辨率640x480@60Hz;
SDI视频解码方案:GS2971芯片解码方案;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到640x480;
图像缓存方案:FDMA图像缓存+DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X2,5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
6、工程源码3详解-->Kintex7-35T,SDI视频1920x1080缩放到1280x720转PCIE输出版本
开发板FPGA型号:Xilinx-Kintex7--35T--xc7k325tffg484-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:PCIE2.0,分辨率1280x720@60Hz;
SDI视频解码方案:GS2971芯片解码方案;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:FDMA图像缓存+DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X8,2.5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
7、工程源码4详解-->Kintex7-35T,SDI视频1920x1080缩放到640x480转PCIE输出版本
开发板FPGA型号:Xilinx-Kintex7--35T--xc7k325tffg484-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:PCIE2.0,分辨率640x480@60Hz;
SDI视频解码方案:GS2971芯片解码方案;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到640x480;
图像缓存方案:FDMA图像缓存+DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X8,2.5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
8、工程源码5详解-->Zynq7100,SDI视频1920x1080缩放到1280x720转PCIE输出版本
开发板FPGA型号:Xilinx--Zynq7100--xc7z100ffg900-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:PCIE2.0,分辨率1280x720@60Hz;
SDI视频解码方案:GS2971芯片解码方案;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:FDMA图像缓存+PL端DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X8,2.5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
9、工程源码6详解-->Zynq7100,SDI视频1920x1080缩放到640x480转PCIE输出版本
开发板FPGA型号:Xilinx--Zynq7100--xc7z100ffg900-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:PCIE2.0,分辨率640x480@60Hz;
SDI视频解码方案:GS2971芯片解码方案;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到640x480;
图像缓存方案:FDMA图像缓存+PL端DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X8,2.5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构实现SDI视频缩放转PCIE传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
10、工程移植说明
vivado版本不一致处理
1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件-->另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
3:如果你的vivado版本高于本工程vivado版本,解决如下:
打开工程后会发现IP都被锁住了,如下:
此时需要升级IP,操作如下:
FPGA型号不一致处理
如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;
其他注意事项
1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;
11、上板调试验证
准备工作
需要准备的器材如下:
SDI摄像头或HDMI转SDI盒子;
FPGA开发板;
PC主机;
我的开发板连接如下:
下载FPGA工程bit,重启电脑,打开上位机软件,即可看到测速情况;
SDI视频1920x1080缩放到1280x720转PCIE输出效果演示
SDI视频1920x1080缩放到1280x720转PCIE输出效果演示如下:
SDI-缩放720P-RIFFA-PCIE
SDI视频1920x1080缩放到640x480转PCIE输出效果演示
SDI视频1920x1080缩放到640x480转PCIE输出效果演示如下:
SDI-缩放480P-RIFFA-PCIE
12、福利:工程代码的获取
福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务: