多模一站通 —— Amazon Bedrock 上的基础模型初体验

Amazon Bedrock 是一项完全托管的服务,通过统一的 API 提供来自 AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI 和 Amazon 等领先 AI 公司的高性能基础模型(FMs),同时提供广泛的功能,让您能够在确保安全、隐私和负责任 AI 的前提下构建生成式 AI 应用。

模型探索与应用

为了确保模型的高效使用,建议优先选择美国区域,这样可以获取更多的模型选项,并且在请求模型时,可以方便地查看其访问状态。

Amazon Bedrock 概览

Amazon Bedrock 提供了丰富的功能,助力开发者和企业在构建智能应用时更加高效。通过使用 Bedrock,您可以:

  1. 轻松测试与评估:快速了解您的用例在不同基础模型下的表现;
  2. 定制化开发:利用微调和检索增强生成(RAG)等技术,打造符合需求的应用程序;
  3. 智能代理构建:开发可以与企业系统和数据源无缝集成的智能代理,自动执行各种任务;
  4. 模型评估:通过自动或手动评估功能,对比不同模型,选择最适合您需求的基础模型。评估指标涵盖准确性、稳健性以及有害内容筛查等;
  5. 安全防护:利用 Guardrails,根据应用需求和负责任的人工智能政策,定制安全保障措施,确保输入和输出内容的安全。

目前,Bedrock 已经托管了最新的 Llama 3.1 模型,包含 8B 和 70B 版本,同时也支持最新的 Mistral Large 模型。

文本生成

考虑到 Meta 的模型在中文处理上的表现不佳,因此本文选择了 Mistral AI 的 Large 模型来进行文本生成。该模型在中文生成方面表现出色,能够大幅提升生成效果。

此外,使用大模型进行代码生成也是一大优势,它可以帮助我们节省大量的调试时间。

图片生成

在图片生成方面,您可以使用 Stable Diffusion XL - SDXL 1.0 或 Titan Image Generator G1。我选择了 Titan Image Generator G1 来生成一些示例图片,默认生成的是横向的 1024x1024 分辨率图像。

生成图片需要一些时间,但结果展示了 AI 帮助我们实现的"鸟语花香"美景。

模型评估

如前所述,您可以选择自动评估或手动评估模型的表现,以确保其符合项目需求。

安全防护机制

在安全防护方面,您可以手动设置模型拒绝特定回答的关键词。例如,我在此处设置了"彩票"、"中奖"和"恭喜"作为屏蔽词,并阻止模型回答涉及 PII(个人身份信息)的请求,如姓名等。

在另一个评估规则中,我将"Name"规则设置为"Mask",因此,模型在回答涉及特定姓名时会用替代词替换。例如,马斯克的名字已被遮盖。

对于检测到的屏蔽关键词,模型还会给出拒绝回答的提示,如"就不告诉你~"。


结语

通过合理选择模型并进行安全性设置,Amazon Bedrock 为我们提供了强大的工具,助力开发智能、安全、负责任的 AI 应用。无论是文本生成、图片生成,还是模型评估和安全防护,Bedrock 都能为您的项目提供全面支持。

相关推荐
子春一几秒前
Flutter 与 AI 融合开发实战:在移动端集成大模型、智能推荐与生成式 UI
人工智能·flutter·ui
whitelbwwww26 分钟前
Python图像处理入门指南--opencv
人工智能·opencv·计算机视觉
Peter114671785034 分钟前
华中科技大学研究生课程《数字图像处理I》期末考试(2025-回忆版/电子信息与通信学院)
图像处理·人工智能·计算机视觉
颜颜yan_43 分钟前
在openEuler上搞个云原生AI模型商店:像点外卖一样部署模型
人工智能·云原生
lomocode1 小时前
Dify 自建部署完全指南:从上手到放弃到真香
人工智能
aaaa_a1332 小时前
李宏毅——self-attention Transformer
人工智能·深度学习·transformer
Coovally AI模型快速验证2 小时前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
云和数据.ChenGuang2 小时前
AI运维工程师技术教程之Linux环境下部署Deepseek
linux·运维·人工智能
cvyoutian2 小时前
解决 PyTorch 大型 wheel 下载慢、超时和反复重下的问题
人工智能·pytorch·python
oliveray2 小时前
解决开放世界目标检测问题——Grounding DINO
人工智能·目标检测·计算机视觉