PyTorch踩坑记录1

1 model.eval()无法关闭dropout

因为model.eval()控制self.training参数,只有用nn.Dropout(0.5)声明才能在调用model.eval()后关闭,用F.dropout(x, p=0.5)是没办法自动关闭的,需要手动把self.training的参数传入到F.dropout()里才行。

网上查到是因为model.eval()会影响继承nn.module类的self.方法的训练和测试,但是F.dropout更像是一个函数没继承nn,module。

另外,回归模型在后面几层应该避免使用dropout,最多在浅层使用。

2 BCEloss归一化

在tf2中BCEloss没有归一化,但是在torch中的损失函数是归一化了的。

相关推荐
yhdata1 分钟前
3.6%年复合增速定调!雾化片赛道未来六年发展路径清晰,潜力稳步释放
大数据·人工智能
乾元2 分钟前
对抗性攻击:一张贴纸如何让自动驾驶视觉系统失效?
运维·网络·人工智能·安全·机器学习·自动驾驶
读创商闻32 分钟前
2026主流商旅平台Top 5测评与选型解析:制造业企业的商旅治理逻辑
大数据·人工智能
天一生水water43 分钟前
基于FFT的频域故障诊断
人工智能·算法·智慧油田
宇擎智脑科技1 小时前
OpenClaw:开源多渠道AI个人助手的技术架构与实践分析
人工智能·智能体
码农小韩1 小时前
AIAgent应用开发——DeepSeek分析(一)
人工智能·python·深度学习·agent·强化学习
【赫兹威客】浩哥1 小时前
半导体芯片缺陷检测数据集分享及多版本YOLO模型训练验证
人工智能·计算机视觉·目标跟踪
学Linux的语莫1 小时前
skills的使用
java·数据库·python
硅基流动1 小时前
硅基流动 × Open Course:更懂你的个性化智能学伴
人工智能
大模型玩家七七1 小时前
关系记忆不是越完整越好:chunk size 的隐性代价
java·前端·数据库·人工智能·深度学习·算法·oracle