分布式训练ddp和slurm

使用ddp:https://blog.51cto.com/u_16213675/9632480

使用slurm:https://blog.csdn.net/LittleNyima/article/details/136813418

使用 Slurm 管理多机多卡训练

对于一般的用户来说,ddp多机多卡训练方式已经基本上够用了。然而对于需要进行更大规模训练的人来说,在每个节点上依次运行命令比较繁琐并且容易出错。同时,大规模 GPU 集群需要有效的管理方式,来提高资源利用率。为了做到这一点,Slurm 是一个比较好的选择。Slurm 主要的作用在于任务调度,其可以为用户分配计算机节点来执行任务,并且支持任务队列,可以比较高效地分配资源。

在编写训练脚本时,无论启动方式如何,我们关心的都是 master 节点地址、local rank、进程总数等信息,我们可以参考 mmcv 的方式对这些内容进行初始化:

python 复制代码
def _init_dist_slurm(backend: str, port: Optional[int] = None) -> None:
    proc_id = int(os.environ['SLURM_PROCID'])
    ntasks = int(os.environ['SLURM_NTASKS'])
    node_list = os.environ['SLURM_NODELIST']
    num_gpus = torch.cuda.device_count()
    torch.cuda.set_device(proc_id % num_gpus)
    addr = subprocess.getoutput(
        f'scontrol show hostname {node_list} | head -n1')
    # specify master port
    if port is not None:
        os.environ['MASTER_PORT'] = str(port)
    elif 'MASTER_PORT' in os.environ:
        pass  # use MASTER_PORT in the environment variable
    else:
        # if torch.distributed default port(29500) is available
        # then use it, else find a free port
        if _is_free_port(29500):
            os.environ['MASTER_PORT'] = '29500'
        else:
            os.environ['MASTER_PORT'] = str(_find_free_port())
    # use MASTER_ADDR in the environment variable if it already exists
    if 'MASTER_ADDR' not in os.environ:
        os.environ['MASTER_ADDR'] = addr
    os.environ['WORLD_SIZE'] = str(ntasks)
    os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
    os.environ['RANK'] = str(proc_id)
    dist.init_process_group(backend=backend)

在任务启动时,使用 Slurm 提供的工具:

python 复制代码
srun \
    -p ${PARTITION} \
    --job-name=${JOB_NAME} \
    --gres=${GPUS_PER_NODE} \
    --ntasks=${GPUS} \
    --ntasks-per-node=${GPUS_PER_NODE} \
    --cpus-per-task=${CPUS_PER_TASK} \
    --kill-on-bad-exit=1 \
    python train.py
相关推荐
武子康1 小时前
Java-72 深入浅出 RPC Dubbo 上手 生产者模块详解
java·spring boot·分布式·后端·rpc·dubbo·nio
橘子在努力4 小时前
【橘子分布式】Thrift RPC(理论篇)
分布式·网络协议·rpc
lifallen6 小时前
Kafka 时间轮深度解析:如何O(1)处理定时任务
java·数据结构·分布式·后端·算法·kafka
沈健_算法小生9 小时前
基于SpringBoot3集成Kafka集群
分布式·kafka·linq
Swift社区9 小时前
ELK、Loki、Kafka 三种日志告警联动方案全解析(附实战 Demo)
分布式·elk·kafka
chanalbert18 小时前
Nacos 技术研究文档(基于 Nacos 3)
spring boot·分布式·spring cloud
线条120 小时前
Spark 单机模式安装与测试全攻略
大数据·分布式·spark
C182981825751 天前
分布式ID 与自增区别
分布式
码字的字节1 天前
深入解析Hadoop架构设计:原理、组件与应用
大数据·hadoop·分布式·hadoop架构设计
悟能不能悟1 天前
Dubbo跨越分布式事务的最终一致性陷阱
分布式·wpf·dubbo