transformers调用llama的方式

transformers调用llama的使用方式

不同版本llama对应的transformers库版本

python 复制代码
# llama2
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install transformers==4.32.1
pip install accelerate==0.22.0
# llama3
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install transformers==4.35.0
pip install accelerate==0.22.0
# llama3.1
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
pip install transformers==4.43.1
pip install accelerate==0.22.0

llama2

待补充

llama3

Meta-Llama-3-8B-Instruct

可用于QA,summarize,示例代码

python 复制代码
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "meta-llama/Meta-Llama-3-8B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map='cuda',
)

messages = [
    {"role": "system", "content": "You are an assistant who provides precise and direct answers."},
    {"role": "user", "content": "In the sentence 'A boy is playing football', what is the exact action activity described? Provide only the exact phrase."},
]
input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=20,
    eos_token_id=terminators,
    do_sample=False,
    temperature=0.0,
    top_p=1.0,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True)) # 输出 "playing football"

Meta-Llama-3-8B

可用于文本生成,使用体验一般

python 复制代码
import transformers
import torch
from transformers import AutoTokenizer
model_id = "/home/mayunchuan/.cache/huggingface/transformers/meta-llama/Meta-Llama-3-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipeline = transformers.pipeline(
    "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="cuda",max_length=40,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id
)
result = pipeline("Hey how are you doing today?")
print(result) # 输出 [{'generated_text': 'Hey how are you doing today? I am doing well. I am a little bit tired because I have been working a lot. I am a little bit tired because I have been working a lot.'}]

llama3.1

Meta-Llama-3.1-8B-Instruct

可用于QA,summarize,可使用llama3-chat同样的示例代码

python 复制代码
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map='cuda',
)

messages = [
    {"role": "system", "content": "You are an assistant who provides precise and direct answers."},
    {"role": "user", "content": "In the sentence 'A boy is playing football', what is the exact action activity described? Provide only the exact phrase."},
]
input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=20,
    eos_token_id=terminators,
    do_sample=False,
    temperature=0.0,
    top_p=1.0,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True)) # 输出 Playing football.

也可以使用另一个demo

python 复制代码
import transformers
import torch
from transformers import AutoTokenizer
model_id = "meta-llama/Meta-Llama-3.1-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipeline = transformers.pipeline(
    "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="cuda",max_length=35,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id
)
result = pipeline("who are you?")
print(result)

import transformers
import torch

model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are an assistant who provides precise and direct answers."},
    {"role": "user", "content": "In the sentence 'A boy is playing football', what is the exact action activity described? Provide only the exact phrase."},
]
outputs = pipeline(
    messages,
    max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1]) # 输出 {'role': 'assistant', 'content': 'Playing football.'}
相关推荐
强盛小灵通专卖员16 分钟前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
Hcoco_me37 分钟前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
哥布林学者38 分钟前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (七)双向 RNN 与深层 RNN
深度学习·ai
极海拾贝1 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派2 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
知乎的哥廷根数学学派2 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
童话名剑3 小时前
锚框 与 完整YOLO示例(吴恩达深度学习笔记)
笔记·深度学习·yolo··anchor box
Hcoco_me4 小时前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
OpenCSG5 小时前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习