Stable diffusion模型如何区分?通俗易懂,入门必看!

前言

在Stable Diffusion的基础学习中,很多小伙伴们可能看到繁杂的大模型就蒙圈了,那么多的模型后缀,究竟代表什么呢?如何区分呢?今天就带大家来学习一下~

不同后缀模型介绍

在Stable diffusion中,有两种比较常见的模型后缀,分别是 .ckpt 和 .safetensors 。

1

.ckpt

.ckpt 的全称是 checkpoint,中文翻译就是检查点,这是 TensorFlow中用于保存模型参数的格式,通常与 .meta 文件一起使用,以便恢复训练过程。

简单理解的话,.ckpt模型就好比我们打游戏时,每通过一关时对这一关的一个"存档",因为你在训练模型时也是如此,没办法保证能一次就训练成功,中途是有可能因为各种因素失败的,所以可能在训练到20%时就存一次档,训练到40%时又存一次档,这也是为什么它叫 checkpoint 的一个原因。

在提到.ckpt 模型时,顺便补充下.pt 模型,前面提到,.ckpt 是TensorFlow 用于保存模型参数的格式,而 .pt 则是 PyTorch保存模型参数的格式。TensorFlow 和 PyTorch都是比较出名的深度学习框架,只不过一个是Google发布的,另外一个是Facebook发布的。

PyTorch 保存模型的格式除了.pt 之外,还有 .pth 和.pkl。.pt 和 .pth 之间并没有本质的差别,而.pkl 只是多了一步用Python的 pickle 模块进行序列化。

所有的AI设计工具,模型和插件,都已经整理好了,👇获取~

.safetensors

讲完了 .ckpt 模型,那么就该说说 .safetensors 模型了。

之所以有 .safetensors 模型,是因为 .ckpt 为了让我们能够从之前训练的状态恢复训练,好比从50%这个点位重新开始训练,从而保存了比较多的训练信息,比如模型的权重、优化器的状态还有一些Python代码。

这种做法有两个问题,一是可能包含恶意代码,因此不建议从未知或不信任的来源下载并加载.ckpt 模型文件;二是模型的体积较大,一般真人版的单个模型的大小在7GB左右,动漫版的在2-5GB之间。

而 .safetensors 模型则是 huggingface 推出的新的模型存储格式,专门为Stable Diffusion模型设计。这种格式的文件只保存模型的权重,而不包含优化器状态或其他信息,这也就意味着它通常用于模型的最终版本,当我们只关心模型的性能,而不需要了解训练过程中的详细信息时,这种格式便是一个很好的选择。

由于 .safetensors 只保存模型的权重,没有代码,所以会更安全;另外由于保存的信息更少,所以它的体积也比 .ckpt 小,加载也更快,所以目前是比较推荐使用 .safetensors 的模型文件。

总的来说,如果你想在某个SD模型上进行微调,那还是得用 .ckpt 模型;但如果你只关心出图结果,那么使用 .safetensors 模型会更好!

模型下载

模型下载模型下载的渠道很多,一种是网站下载,一个是本地部署的启动器内下载。网站下载模型网站很多,这里主要介绍 2 个:

1、国内 - 哩布哩布

每个模型详细页面也有模型的参数、使用建议和效果图的具体信息,包括正反提示词,使用的什么模型,以及参数细节。

2、国外 - C站

备注:需要魔法访问

对于模型的基础知识就介绍到这啦~

这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。

有需要的朋友,可以点击下方免费领取!

AIGC所有方向的学习路线思维导图

这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:

AIGC工具库

AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC

有需要的朋友,可以点击下方卡片免费领取!

精品AIGC学习书籍手册

书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。

AI绘画视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。

相关推荐
Jeremy_lf9 分钟前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
桃花键神1 小时前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
野蛮的大西瓜1 小时前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6192 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen2 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝2 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界2 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术3 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck3 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409663 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析