opencv处理图片(实战指南)

一、OpenCV简介

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它拥有众多的图像处理和计算机视觉功能,包括各种常用的图像处理技术,如滤波、边缘检测、特征提取等。OpenCV支持多种编程语言,如C++、Python、Java等,这使得它成为图像处理领域广泛使用的工具之一。

二、实战演练

1. 图像读取与显示

使用cv2.imread()函数读取图像,使用cv2.imshow()函数显示图像。这是图像处理中最基础的操作。

2. 图像灰度化

灰度化是将彩色图像转换为灰度图像的过程。在OpenCV中,可以使用cv2.cvtColor()函数实现:

3. 边缘检测

边缘检测是图像处理中的一项重要技术,用于识别图像中的边界。OpenCV提供了多种边缘检测算法,如Canny、Sobel等。以下是使用Canny算法进行边缘检测的示例:

python 复制代码
edges = cv2.Canny(gray_image, threshold1=100, threshold2=200)  
cv2.imshow('Edges', edges)  
cv2.waitKey(0)
4. 图像缩放

使用cv2.resize()函数可以对图像进行缩放。你可以指定新的图像大小,或者使用缩放比例。

python 复制代码
resized_image = cv2.resize(image, (new_width, new_height))  
# 或者使用缩放比例  
# resized_image = cv2.resize(image, None, fx=0.5, fy=0.5)  
cv2.imshow('Resized Image', resized_image)  
cv2.waitKey(0)
5.从图片 a 中提取了红色、绿色和蓝色通道
python 复制代码
import cv2  
  
# 读取图片  
a = cv2.imread('你的图片位置')  
  
# 提取红色、绿色和蓝色通道  
a1 = a[:, :, 0]  # 蓝色通道  
a2 = a[:, :, 1]  # 绿色通道  
a3 = a[:, :, 2]  # 红色通道  
  
# 使用cv2.split()分解图片为单独的颜色通道  
b, g, r = cv2.split(a)  
  
# 显示蓝色通道的图片  
cv2.imshow('Blue Channel', b)  
cv2.waitKey(0)  # 等待任意键盘输入  
  
# 截取图片的一部分  
b = a[100:300, 100:300]  
  
# 显示原始图片和截取的图片  
cv2.imshow('Original Image', a)  
cv2.imshow('Cropped Image', b)  
cv2.waitKey(0)  # 等待任意键盘输入  
  
# 销毁所有OpenCV窗口  
cv2.destroyAllWindows()

以上是一些基础的图片处理方法

相关推荐
酌沧27 分钟前
AI做美观PPT:3步流程+工具测评+避坑指南
人工智能·powerpoint
狂师32 分钟前
啥是AI Agent!2025年值得推荐入坑AI Agent的五大工具框架!(新手科普篇)
人工智能·后端·程序员
星辰大海的精灵34 分钟前
使用Docker和Kubernetes部署机器学习模型
人工智能·后端·架构
victory043136 分钟前
SpiceMix enables integrative single-cell spatial modeling of cell identity 文章解读
人工智能·深度学习
新智元40 分钟前
半数清华,8 位华人 AI 天团集体投奔 Meta!奥特曼:砸钱抢人不如培养死忠
人工智能·openai
新智元43 分钟前
全球顶尖 CS 论文惊爆 AI「好评密令」!哥大等 14 所高校卷入,学术圈炸锅
人工智能·openai
l0sgAi1 小时前
vLLM在RTX50系显卡上部署大模型-使用wsl2
linux·人工智能
DDliu1 小时前
花半个月死磕提示词后,我发现:真正值钱的不是模板,是这套可复用的结构化思维
人工智能
腾讯云开发者1 小时前
AI 浪潮下的锚与帆:工程师文化的变与不变 | 架构师夜生活
人工智能
JoernLee1 小时前
机器学习算法:支持向量机SVM
人工智能·算法·机器学习