opencv处理图片(实战指南)

一、OpenCV简介

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它拥有众多的图像处理和计算机视觉功能,包括各种常用的图像处理技术,如滤波、边缘检测、特征提取等。OpenCV支持多种编程语言,如C++、Python、Java等,这使得它成为图像处理领域广泛使用的工具之一。

二、实战演练

1. 图像读取与显示

使用cv2.imread()函数读取图像,使用cv2.imshow()函数显示图像。这是图像处理中最基础的操作。

2. 图像灰度化

灰度化是将彩色图像转换为灰度图像的过程。在OpenCV中,可以使用cv2.cvtColor()函数实现:

3. 边缘检测

边缘检测是图像处理中的一项重要技术,用于识别图像中的边界。OpenCV提供了多种边缘检测算法,如Canny、Sobel等。以下是使用Canny算法进行边缘检测的示例:

python 复制代码
edges = cv2.Canny(gray_image, threshold1=100, threshold2=200)  
cv2.imshow('Edges', edges)  
cv2.waitKey(0)
4. 图像缩放

使用cv2.resize()函数可以对图像进行缩放。你可以指定新的图像大小,或者使用缩放比例。

python 复制代码
resized_image = cv2.resize(image, (new_width, new_height))  
# 或者使用缩放比例  
# resized_image = cv2.resize(image, None, fx=0.5, fy=0.5)  
cv2.imshow('Resized Image', resized_image)  
cv2.waitKey(0)
5.从图片 a 中提取了红色、绿色和蓝色通道
python 复制代码
import cv2  
  
# 读取图片  
a = cv2.imread('你的图片位置')  
  
# 提取红色、绿色和蓝色通道  
a1 = a[:, :, 0]  # 蓝色通道  
a2 = a[:, :, 1]  # 绿色通道  
a3 = a[:, :, 2]  # 红色通道  
  
# 使用cv2.split()分解图片为单独的颜色通道  
b, g, r = cv2.split(a)  
  
# 显示蓝色通道的图片  
cv2.imshow('Blue Channel', b)  
cv2.waitKey(0)  # 等待任意键盘输入  
  
# 截取图片的一部分  
b = a[100:300, 100:300]  
  
# 显示原始图片和截取的图片  
cv2.imshow('Original Image', a)  
cv2.imshow('Cropped Image', b)  
cv2.waitKey(0)  # 等待任意键盘输入  
  
# 销毁所有OpenCV窗口  
cv2.destroyAllWindows()

以上是一些基础的图片处理方法

相关推荐
Liue61231231几秒前
YOLO11-LADH改进:无人机与鸟类目标检测的精准识别方案
人工智能·目标检测·无人机
够快云库3 分钟前
激活数据要素“乘数效应”:如何筑牢国家数据科技创新的微观底座?
人工智能·企业文件安全·企业文件管理
算法哥6 分钟前
使用GPU加速的pytorch框架
人工智能
IT 行者6 分钟前
Claude之父AI编程技巧十三:质量改进实践——让AI持续进化的秘密武器
人工智能·ai编程
笑脸惹桃花7 分钟前
目标检测数据集——纺织品织物缺陷检测数据集
人工智能·yolo·目标检测·计算机视觉
星诺算法备案8 分钟前
算法备案中“落实算法安全主体责任”的实操构建
人工智能·算法·算法备案
li星野12 分钟前
OpenCV4X学习—图像平滑、几何变换
图像处理·学习·计算机视觉
做cv的小昊13 分钟前
3DGS加速&压缩指标评测方法、高斯数量变化曲线绘制——Training Time、FPS、Gaussian Number、Peak Memory
笔记·计算机视觉·3d·开源·github·图形渲染·3dgs
GIOTTO情19 分钟前
媒介投放智能化转型:Infoseek 基于 AI 大模型的全链路技术实现
人工智能
Guheyunyi24 分钟前
电气安全管理系统:架构、技术与智能预警体系
大数据·人工智能·科技·安全·架构