LeetCode //C - 329. Longest Increasing Path in a Matrix

329. Longest Increasing Path in a Matrix

Given an m x n integers matrix, return the length of the longest increasing path in matrix.

From each cell, you can either move in four directions: left, right, up, or down. You may not move diagonally or move outside the boundary (i.e., wrap-around is not allowed).

Example 1:

Input: matrix = [[9,9,4],[6,6,8],[2,1,1]]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].

Example 2:

Input: matrix = [[3,4,5],[3,2,6],[2,2,1]]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Example 3:

Input: matrix = [[1]]
Output: 1

Constraints:
  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • 0 < = m a t r i x [ i ] [ j ] < = 2 31 − 1 0 <= matrix[i][j] <= 2^{31} - 1 0<=matrix[i][j]<=231−1

From: LeetCode

Link: 329. Longest Increasing Path in a Matrix


Solution:

Ideas:
  • DFS with Memoization: The solution uses Depth-First Search (DFS) combined with memoization to explore all possible paths starting from each cell in the matrix.
  • Memoization: An array memo is used to store the length of the longest path starting from each cell to avoid redundant calculations.
  • Directions Array: The array directions stores the four possible directions (up, down, left, right) in which one can move.
Code:
c 复制代码
int dfs(int** matrix, int m, int n, int** memo, int i, int j) {
    if (memo[i][j] != 0) return memo[i][j];
    
    int directions[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    int maxLength = 1;
    
    for (int d = 0; d < 4; d++) {
        int x = i + directions[d][0];
        int y = j + directions[d][1];
        
        if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
            int len = 1 + dfs(matrix, m, n, memo, x, y);
            maxLength = (len > maxLength) ? len : maxLength;
        }
    }
    
    memo[i][j] = maxLength;
    return maxLength;
}

int longestIncreasingPath(int** matrix, int matrixSize, int* matrixColSize) {
    if (matrixSize == 0 || matrixColSize[0] == 0) return 0;
    
    int m = matrixSize;
    int n = matrixColSize[0];
    
    int** memo = (int**)malloc(m * sizeof(int*));
    for (int i = 0; i < m; i++) {
        memo[i] = (int*)calloc(n, sizeof(int));
    }
    
    int result = 0;
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            int len = dfs(matrix, m, n, memo, i, j);
            result = (len > result) ? len : result;
        }
    }
    
    for (int i = 0; i < m; i++) {
        free(memo[i]);
    }
    free(memo);
    
    return result;
}
相关推荐
爱吃rabbit的mq12 分钟前
第09章:随机森林:集成学习的威力
算法·随机森林·集成学习
精彩极了吧16 分钟前
C语言基本语法-自定义类型:结构体&联合体&枚举
c语言·开发语言·枚举·结构体·内存对齐·位段·联合
(❁´◡`❁)Jimmy(❁´◡`❁)1 小时前
Exgcd 学习笔记
笔记·学习·算法
YYuCChi1 小时前
代码随想录算法训练营第三十七天 | 52.携带研究材料(卡码网)、518.零钱兑换||、377.组合总和IV、57.爬楼梯(卡码网)
算法·动态规划
不能隔夜的咖喱2 小时前
牛客网刷题(2)
java·开发语言·算法
VT.馒头2 小时前
【力扣】2721. 并行执行异步函数
前端·javascript·算法·leetcode·typescript
进击的小头2 小时前
实战案例:51单片机低功耗场景下的简易滤波实现
c语言·单片机·算法·51单片机
czy87874753 小时前
const 在 C/C++ 中的全面用法(C/C++ 差异+核心场景+实战示例)
c语言·开发语言·c++
咖丨喱3 小时前
IP校验和算法解析与实现
网络·tcp/ip·算法
罗湖老棍子4 小时前
括号配对(信息学奥赛一本通- P1572)
算法·动态规划·区间dp·字符串匹配·区间动态规划