LeetCode //C - 329. Longest Increasing Path in a Matrix

329. Longest Increasing Path in a Matrix

Given an m x n integers matrix, return the length of the longest increasing path in matrix.

From each cell, you can either move in four directions: left, right, up, or down. You may not move diagonally or move outside the boundary (i.e., wrap-around is not allowed).

Example 1:

Input: matrix = [[9,9,4],[6,6,8],[2,1,1]]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].

Example 2:

Input: matrix = [[3,4,5],[3,2,6],[2,2,1]]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Example 3:

Input: matrix = [[1]]
Output: 1

Constraints:
  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • 0 < = m a t r i x [ i ] [ j ] < = 2 31 − 1 0 <= matrix[i][j] <= 2^{31} - 1 0<=matrix[i][j]<=231−1

From: LeetCode

Link: 329. Longest Increasing Path in a Matrix


Solution:

Ideas:
  • DFS with Memoization: The solution uses Depth-First Search (DFS) combined with memoization to explore all possible paths starting from each cell in the matrix.
  • Memoization: An array memo is used to store the length of the longest path starting from each cell to avoid redundant calculations.
  • Directions Array: The array directions stores the four possible directions (up, down, left, right) in which one can move.
Code:
c 复制代码
int dfs(int** matrix, int m, int n, int** memo, int i, int j) {
    if (memo[i][j] != 0) return memo[i][j];
    
    int directions[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    int maxLength = 1;
    
    for (int d = 0; d < 4; d++) {
        int x = i + directions[d][0];
        int y = j + directions[d][1];
        
        if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
            int len = 1 + dfs(matrix, m, n, memo, x, y);
            maxLength = (len > maxLength) ? len : maxLength;
        }
    }
    
    memo[i][j] = maxLength;
    return maxLength;
}

int longestIncreasingPath(int** matrix, int matrixSize, int* matrixColSize) {
    if (matrixSize == 0 || matrixColSize[0] == 0) return 0;
    
    int m = matrixSize;
    int n = matrixColSize[0];
    
    int** memo = (int**)malloc(m * sizeof(int*));
    for (int i = 0; i < m; i++) {
        memo[i] = (int*)calloc(n, sizeof(int));
    }
    
    int result = 0;
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            int len = dfs(matrix, m, n, memo, i, j);
            result = (len > result) ? len : result;
        }
    }
    
    for (int i = 0; i < m; i++) {
        free(memo[i]);
    }
    free(memo);
    
    return result;
}
相关推荐
墨染点香几秒前
LeetCode 刷题【144. 二叉树的前序遍历】
数据结构·算法·leetcode
cynicme5 小时前
力扣3318——计算子数组的 x-sum I(偷懒版)
java·算法·leetcode
ACP广源盛139246256737 小时前
(ACP广源盛)GSV6172---MIPI/LVDS 信号转换为 Type-C/DisplayPort 1.4/HDMI 2.0 并集成嵌入式 MCU
c语言·开发语言·单片机·嵌入式硬件·音视频
im_AMBER8 小时前
算法笔记 09
c语言·数据结构·c++·笔记·学习·算法·排序算法
凯芸呢8 小时前
Java中的数组(续)
java·开发语言·数据结构·算法·青少年编程·排序算法·idea
寂静山林8 小时前
UVa 1030 Image Is Everything
算法
AI柠檬8 小时前
几种排序算法的实现和性能比较
数据结构·算法·c#·排序算法
weixin_429630268 小时前
第6章 支持向量机
算法·机器学习·支持向量机
SweetCode8 小时前
C++ 实现大数加法
开发语言·c++·算法
王哈哈^_^8 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计