R语言统计分析——回归中的异常观测值

参考资料:R语言实战【第2版】

一个全面的回归分析要覆盖对异常值的分析,包括离群点、高杠杆点和强影响点。这些数据点需要更深入的研究,因为它们在一定程度上与其他观点不同,可能对结果产生较大的负面影响。

1、离群点

离群点是指那些模型预测效果不佳的观测点。它们通常有很大的、或正或负的残差(残差:实际值-预测值)。正的残差说明低估了响应值,负的残差则说明高估了响应值。

我们可以使用Q-Q图的方式鉴别离群点car包中的qqPlot()函数 (落在置信区间带以外的点可被认为是离群点),或者基础安装中的plot()函数。另外,我们还有一个粗糙的判断标准:标准化残差大于2或小于-2的点可能是离群点,需要特别关注。

car包也提供了一种离群点的统计检验方法。outlierTest()函数可以求得最大标准化残差绝对值Bonferroni调整后的p值。

R 复制代码
# 获取数据
states<-as.data.frame(state.x77[,c("Murder","Population",
                                   "Illiteracy","Income","Frost")])
# 拟合多元线性模型
fit<-lm(Murder~Population+Illiteracy+Income+Frost,data=states)
# 导入car包
library(car)
# 检验离群点
outlierTest(fit)
# 绘制Q-Q图
qqPlot(fit,
       simulate = TRUE,
       main="Q-Q Plot")

根据结果,我们可以看出Nevada被判定为离群点(p=0.047544)。注意,该函数只是根据单个最大(或正或负)残差值的显著性来判断是否有离群点。若不显著,则说明数据集中没有离群点,若显著,则必须删除该离群点,然后再检验是否还有其他离群点

上图也用Q-Q图的形式展示了离群点,Nevada点明显位于置信区间外。

2、高杠杆点

高杠杆值观测点,即与其他预测变量有关的离群点。换句话说,它们是由许多异常的预测变量值组合起来的,与响应变量值没有关系

高杠杆值得观测点可通过帽子统计量(hat statistic)判断。对于一个给定的数据集,帽子均值为p/n ,其中p是模型估计的参数数目(包含截距项),n是样本量。一般来说,若观测点的帽子值大于帽子均值的2倍或3倍,就可以认定为高杠杆值点。帽子分布的绘制如下:

R 复制代码
# 定义帽子函数
hat.plot<-function(fit){
  p<-length(coefficients(fit))
  n<-length(fitted(fit))
  plot(hatvalues(fit),main="Index Plot of Hat Values")
  abline(h=c(2,3)*p/n,col="red",lty=2)
  identify(1:n,hatvalues(fit),names(hatvalues(fit)))
}
# 展示帽子检验结果
hat.plot(fit)

绘制的水平线标注即帽子均值的2倍和3倍的位置。

R 复制代码
# 展示强影响值数据点
p<-length(coefficients(fit))
n<-length(fitted(fit))
hatvalues(fit)[hatvalues(fit)>(2*p/n)]

上面的是高杠杠值点,即具体的杠杆值。

高杠杠值可能是强影响点,也可能不是,这要看它们是否是离群点。

3、强影响点

强影响点,即对模型参数估计值影响有些比例失衡的点。例如,若移除模型的一个观测点时模型会发生巨大的改变,那么就需要检测一下数据中是否存在强影响点。

有两种方法可以检测强影响点:Cook距离,或称D统计量,以及变量添加图(added variable plot)。一般来说,Cook's D值大于4/(n-k-1),则表明它是强硬点,其中n是样本量大小,k是预测变量数目。可以通过如下代码绘制Cook's D图形:

R 复制代码
# 获取数据
states<-as.data.frame(state.x77[,c("Murder","Population",
                                   "Illiteracy","Income","Frost")])
# 拟合多元线性模型
fit<-lm(Murder~Population+Illiteracy+Income+Frost,data=states)
# 计算标准值4/(n-k-1)
cutoff<-4/(nrow(states)-length(coefficients(fit))-2)
# 绘制Cook's D图
plot(fit,which = 4,cook.levels=cutoff)
abline(h=cutoff,lty=2,col="red")

通过上图可以看出Alaska、Hawaii和Nevada是强影响点。若删除这些点,则将导致回归模型截距项和斜率发生显著变化。当然,用D=1作为判断标准可能比用D=4/(n-k-1)更具有一般性,如果用D=1为判断标准,则本例的数据集中没有点是强影响点。

Cook's D图有助于鉴别强影响点,但并不提供关于这些点如何影响模型的信息。变量添加图弥补了这个缺陷。所谓变量添加图,即对每一个预测变量Xk,绘制Xk在其他k-1个预测变量上回归的残差值相对于响应变量在其他k-1个预测变量上回归的残差值的关系图。car包中的avPlots()函数可以提供变量添加图:

R 复制代码
# 加载car包
library(car)
# 绘制变量添加图
avPlots(fit,ask = FALSE)

图中的直线表示相应预测变量的实际回归系数。

4、综合显示异常值

我们可以利用car包中的influencePlot()函数,将离群点、杠杆值和强影响点的信息整合到一幅图形中。

R 复制代码
# 加载car包
library(car)
# 绘制异常值综合信息图
influencePlot(fit,
              main="Influence Plot",
              sub="Circle size is proportional to Cook's distance")

纵坐标显示的是标准化残差,纵坐标超过+2或-2时,可以被认为离群点:所以Nevada和Rhode Island是离群点。

水平轴超过0.2或0.3时,可以被认为有高杠杆值**:**California为高杠杆值点。

图中的圆越大颜色越深,则其为 Cook's D值越大:Alaska和Nevada为强影响点。

相关推荐
善木科研11 小时前
读文献先读图:GO弦图怎么看?
机器学习·数据分析·r语言
Tiger Z13 小时前
R 语言科研绘图第 55 期 --- 网络图-聚类
开发语言·r语言·贴图
十三画者18 小时前
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
python·机器学习·数据挖掘·数据分析·r语言·数据可视化
deephub1 天前
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
人工智能·机器学习·数据挖掘·回归·异常值
Steve lu2 天前
回归任务和分类任务损失函数详解
pytorch·深度学习·神经网络·机器学习·分类·回归
AIBigModel2 天前
经典ReLU回归!重大缺陷「死亡ReLU问题」已被解决
人工智能·数据挖掘·回归
lishaoan773 天前
实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题
回归·r语言·线性回归·残差分析·实验设计与数据分析·回归显著性
南瓜胖胖3 天前
【R语言编程绘图-mlbench】
开发语言·机器学习·r语言
天桥下的卖艺者3 天前
R语言使用随机过采样(Random Oversampling)平衡数据集
开发语言·r语言
Biomamba生信基地4 天前
R语言基础| 创建数据集
开发语言·r语言·生信·医药