Pytorch如何指定device(cuda or cpu)例子解析

代码示例:

在PyTorch中,指定设备(CPU或CUDA)是一个非常重要的步骤,特别是当你在进行深度学习训练时。以下是一些指定设备的详细例子:

  1. 检查CUDA是否可用 :

    首先,你需要检查你的机器是否支持CUDA,并且PyTorch是否能够使用CUDA。

    python 复制代码
    import torch
    if torch.cuda.is_available():
        print("CUDA is available. Using GPU.")
    else:
        print("CUDA is not available. Using CPU.")
  2. 设置默认设备 :

    你可以设置PyTorch的默认设备,这样所有的张量和模型都会默认使用这个设备。

    python 复制代码
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  3. 创建张量并指定设备 :

    当你创建张量时,可以指定它们应该在哪个设备上。

    python 复制代码
    # 创建一个在CPU上的张量
    x_cpu = torch.tensor([1., 2., 3.], device='cpu')
    
    # 创建一个在GPU上的张量
    x_gpu = torch.tensor([1., 2., 3.], device=device)
  4. 将张量移动到指定设备 :

    如果张量已经创建,你可以使用.to().cuda()方法将其移动到指定的设备。

    python 复制代码
    # 将张量移动到GPU
    x_gpu = x_cpu.to(device)
    
    # 如果你知道你的设备是GPU,也可以使用.cuda()
    if torch.cuda.is_available():
        x_gpu = x_cpu.cuda()
  5. 指定模型的设备 :

    当你定义模型时,可以将其放置在指定的设备上。

    python 复制代码
    model = MyModel().to(device)
  6. 在训练循环中使用设备 :

    在训练循环中,你需要确保模型的输入数据和目标也在正确的设备上。

    python 复制代码
    for data, target in dataloader:
        data, target = data.to(device), target.to(device)
    
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
  7. 保存和加载模型时指定设备 :

    当你保存或加载模型时,确保模型在正确的设备上。

    python 复制代码
    # 保存模型
    torch.save(model.state_dict(), "model.pth")
    
    # 加载模型
    model = MyModel()
    model.load_state_dict(torch.load("model.pth", map_location=device))
    model.to(device)

请注意,当你在GPU上训练时,所有的输入数据、目标、模型参数等都应该在GPU上。这样可以确保计算是在GPU上进行的,从而提高训练速度。如果你的机器有多个GPU,你还可以指定使用特定的GPU,例如:

python 复制代码
device = torch.device("cuda:0")  # 使用第一个GPU

以上就是在PyTorch中指定设备的一些基本方法和例子。

喜欢本文,请点赞、收藏和关注!

相关推荐
Shawn_Shawn2 小时前
人工智能入门概念介绍
人工智能
极限实验室2 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9963 小时前
Z-Image: 100% Free AI Image Generator
人工智能
码界奇点3 小时前
Python从0到100一站式学习路线图与实战指南
开发语言·python·学习·青少年编程·贴图
爬点儿啥4 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉4 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明4 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习4 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
Laravel技术社区5 小时前
pytesseract 中英文 识别图片文字
python
罗西的思考5 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法