Pytorch如何指定device(cuda or cpu)例子解析

代码示例:

在PyTorch中,指定设备(CPU或CUDA)是一个非常重要的步骤,特别是当你在进行深度学习训练时。以下是一些指定设备的详细例子:

  1. 检查CUDA是否可用 :

    首先,你需要检查你的机器是否支持CUDA,并且PyTorch是否能够使用CUDA。

    python 复制代码
    import torch
    if torch.cuda.is_available():
        print("CUDA is available. Using GPU.")
    else:
        print("CUDA is not available. Using CPU.")
  2. 设置默认设备 :

    你可以设置PyTorch的默认设备,这样所有的张量和模型都会默认使用这个设备。

    python 复制代码
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  3. 创建张量并指定设备 :

    当你创建张量时,可以指定它们应该在哪个设备上。

    python 复制代码
    # 创建一个在CPU上的张量
    x_cpu = torch.tensor([1., 2., 3.], device='cpu')
    
    # 创建一个在GPU上的张量
    x_gpu = torch.tensor([1., 2., 3.], device=device)
  4. 将张量移动到指定设备 :

    如果张量已经创建,你可以使用.to().cuda()方法将其移动到指定的设备。

    python 复制代码
    # 将张量移动到GPU
    x_gpu = x_cpu.to(device)
    
    # 如果你知道你的设备是GPU,也可以使用.cuda()
    if torch.cuda.is_available():
        x_gpu = x_cpu.cuda()
  5. 指定模型的设备 :

    当你定义模型时,可以将其放置在指定的设备上。

    python 复制代码
    model = MyModel().to(device)
  6. 在训练循环中使用设备 :

    在训练循环中,你需要确保模型的输入数据和目标也在正确的设备上。

    python 复制代码
    for data, target in dataloader:
        data, target = data.to(device), target.to(device)
    
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
  7. 保存和加载模型时指定设备 :

    当你保存或加载模型时,确保模型在正确的设备上。

    python 复制代码
    # 保存模型
    torch.save(model.state_dict(), "model.pth")
    
    # 加载模型
    model = MyModel()
    model.load_state_dict(torch.load("model.pth", map_location=device))
    model.to(device)

请注意,当你在GPU上训练时,所有的输入数据、目标、模型参数等都应该在GPU上。这样可以确保计算是在GPU上进行的,从而提高训练速度。如果你的机器有多个GPU,你还可以指定使用特定的GPU,例如:

python 复制代码
device = torch.device("cuda:0")  # 使用第一个GPU

以上就是在PyTorch中指定设备的一些基本方法和例子。

喜欢本文,请点赞、收藏和关注!

相关推荐
m0_74823292几秒前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
袁袁袁袁满3 分钟前
100天精通Python(爬虫篇)——第113天:‌爬虫基础模块之urllib详细教程大全
开发语言·爬虫·python·网络爬虫·爬虫实战·urllib·urllib模块教程
szxinmai主板定制专家6 分钟前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室9 分钟前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
机器懒得学习21 分钟前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
老大白菜26 分钟前
Python 爬虫技术指南
python
QQ同步助手35 分钟前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
AIGC大时代38 分钟前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
流浪的小新43 分钟前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
古希腊掌管学习的神2 小时前
[搜广推]王树森推荐系统——矩阵补充&最近邻查找
python·算法·机器学习·矩阵