Pytorch如何指定device(cuda or cpu)例子解析

代码示例:

在PyTorch中,指定设备(CPU或CUDA)是一个非常重要的步骤,特别是当你在进行深度学习训练时。以下是一些指定设备的详细例子:

  1. 检查CUDA是否可用 :

    首先,你需要检查你的机器是否支持CUDA,并且PyTorch是否能够使用CUDA。

    python 复制代码
    import torch
    if torch.cuda.is_available():
        print("CUDA is available. Using GPU.")
    else:
        print("CUDA is not available. Using CPU.")
  2. 设置默认设备 :

    你可以设置PyTorch的默认设备,这样所有的张量和模型都会默认使用这个设备。

    python 复制代码
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  3. 创建张量并指定设备 :

    当你创建张量时,可以指定它们应该在哪个设备上。

    python 复制代码
    # 创建一个在CPU上的张量
    x_cpu = torch.tensor([1., 2., 3.], device='cpu')
    
    # 创建一个在GPU上的张量
    x_gpu = torch.tensor([1., 2., 3.], device=device)
  4. 将张量移动到指定设备 :

    如果张量已经创建,你可以使用.to().cuda()方法将其移动到指定的设备。

    python 复制代码
    # 将张量移动到GPU
    x_gpu = x_cpu.to(device)
    
    # 如果你知道你的设备是GPU,也可以使用.cuda()
    if torch.cuda.is_available():
        x_gpu = x_cpu.cuda()
  5. 指定模型的设备 :

    当你定义模型时,可以将其放置在指定的设备上。

    python 复制代码
    model = MyModel().to(device)
  6. 在训练循环中使用设备 :

    在训练循环中,你需要确保模型的输入数据和目标也在正确的设备上。

    python 复制代码
    for data, target in dataloader:
        data, target = data.to(device), target.to(device)
    
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
  7. 保存和加载模型时指定设备 :

    当你保存或加载模型时,确保模型在正确的设备上。

    python 复制代码
    # 保存模型
    torch.save(model.state_dict(), "model.pth")
    
    # 加载模型
    model = MyModel()
    model.load_state_dict(torch.load("model.pth", map_location=device))
    model.to(device)

请注意,当你在GPU上训练时,所有的输入数据、目标、模型参数等都应该在GPU上。这样可以确保计算是在GPU上进行的,从而提高训练速度。如果你的机器有多个GPU,你还可以指定使用特定的GPU,例如:

python 复制代码
device = torch.device("cuda:0")  # 使用第一个GPU

以上就是在PyTorch中指定设备的一些基本方法和例子。

喜欢本文,请点赞、收藏和关注!

相关推荐
独好紫罗兰6 分钟前
洛谷题单3-P5719 【深基4.例3】分类平均-python-流程图重构
开发语言·python·算法
27669582927 分钟前
美团民宿 mtgsig 小程序 mtgsig1.2 分析
java·python·小程序·美团·mtgsig·mtgsig1.2·美团民宿
赣州云智科技的技术铺子10 分钟前
【一步步开发AI运动APP】六、运动计时计数能调用
人工智能·程序员
东临碣石8211 分钟前
【AI论文】什么、如何、何处以及效果如何?大语言模型测试时缩放技术调研
人工智能
猪猪的超超13 分钟前
从吉卜力漫画到艺术创造:GPT-4o多种风格绘图Prompt大全
人工智能·prompt·文生图·gpt-4o
橘子在努力16 分钟前
【橘子大模型】关于PromptTemplate
python·ai·llama
带娃的IT创业者16 分钟前
《AI大模型应知应会100篇》第7篇:Prompt Engineering基础:如何与大模型有效沟通
人工智能·prompt
网络研究院17 分钟前
ChatGPT 的新图像生成器非常擅长伪造收据
网络·人工智能·安全·chatgpt·风险·技术·欺诈
Blossom.11820 分钟前
边缘计算:工业自动化的智能新引擎
人工智能·5g·自动化·边缘计算·database·兼容性·5g通讯
SheepMeMe33 分钟前
蓝桥杯2024省赛PythonB组——日期问题
python·算法·蓝桥杯