时间和空间复杂度

1.算法效率

  1. **时间效率,**时间效率被称为时间复杂度, 时间复杂度主要衡量的是一个算法的运行速度
  2. 空间效率,空间效率被称为空间复杂度,空间复杂度主要衡量一个算法所需要的额外空间

2.时间复杂度

大O记法

  1. 用常数 1 取代运行时间中的所有加法常数
  2. 在修改后的运行次数函数中,只保留最高阶项
  3. 如果最高阶存在且系数不是 1 ,则去除与这个项相乘的系数
  • 看一些简单的示例理解一下

// 计算 func2 的时间复杂度?
void func2(int N) {
int count = 0;
for (int k = 0; k < 2 * N ; k++) {
count++;
}
int M = 10;
while ((M--) > 0) {
count++;
}
System.out.println(count);
}
执行了 2N+10 次,通过推导大 O 阶方法知道,时间复杂度为 O(N)

// 计算 func3 的时间复杂度?
void func3(int N, int M) {
int count = 0;
for (int k = 0; k < M; k++) {
count++;
}
for (int k = 0; k < N ; k++) {
count++;
}
System.out.println(count);
}
执行了 M+N 次,有两个未知数 M 和 N ,时间复杂度为 O(N+M)

// 计算 func4 的时间复杂度?
void func4(int N) {
int count = 0;
for (int k = 0; k < 100; k++) {
count++;
}
System.out.println(count);
}
执行了 100 次,通过推导大 O 阶方法,时间复杂度为 O(1)

// 计算 bubbleSort 的时间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
执行最好 N 次,最坏执行了 (N*(N-1))/2 次,通过推导大 O 阶方法 + 时间复杂度一般看最坏,时间
复杂度为 O(N^2)

// 计算 binarySearch 的时间复杂度?
int binarySearch(int[] array, int value) {
int begin = 0;
int end = array.length - 1;
while (begin <= end) {
int mid = begin + ((end-begin) / 2);
if (array[mid] < value)
begin = mid + 1;
else if (array[mid] > value)
end = mid - 1;
else
return mid;
}
return -1;
}
时间复杂度为 O(logN)

// 计算阶乘递归 factorial 的时间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1) * N;
}
操作递归了 N 次,时间复杂度为 O(N) 。

**2.**空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度

// 计算 bubbleSort 的空间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
使用了常数个额外空间,所以空间复杂度为 O(1)

// 计算 fibonacci 的空间复杂度?
int[] fibonacci(int n) {
long[] fibArray = new long[n + 1];
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
动态开辟了 N 个空间,空间复杂度为 O(N)

// 计算阶乘递归 Factorial 的空间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1)*N;
}
3 递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)

相关推荐
yuanManGan1 小时前
数据结构漫游记:静态链表的实现(CPP)
数据结构·链表
2401_858286115 小时前
115.【C语言】数据结构之排序(希尔排序)
c语言·开发语言·数据结构·算法·排序算法
猫猫的小茶馆5 小时前
【数据结构】数据结构整体大纲
linux·数据结构·算法·ubuntu·嵌入式软件
2401_858286116 小时前
109.【C语言】数据结构之求二叉树的高度
c语言·开发语言·数据结构·算法
huapiaoy6 小时前
数据结构---Map&Set
数据结构
南宫生6 小时前
力扣-数据结构-1【算法学习day.72】
java·数据结构·学习·算法·leetcode
yuanbenshidiaos6 小时前
数据结构---------二叉树前序遍历中序遍历后序遍历
数据结构
^南波万^6 小时前
数据结构--排序
数据结构
yuanbenshidiaos7 小时前
数据结构----链表头插中插尾插
网络·数据结构·链表
逊嘘7 小时前
【Java数据结构】LinkedList
java·开发语言·数据结构