时间和空间复杂度

1.算法效率

  1. **时间效率,**时间效率被称为时间复杂度, 时间复杂度主要衡量的是一个算法的运行速度
  2. 空间效率,空间效率被称为空间复杂度,空间复杂度主要衡量一个算法所需要的额外空间

2.时间复杂度

大O记法

  1. 用常数 1 取代运行时间中的所有加法常数
  2. 在修改后的运行次数函数中,只保留最高阶项
  3. 如果最高阶存在且系数不是 1 ,则去除与这个项相乘的系数
  • 看一些简单的示例理解一下

// 计算 func2 的时间复杂度?
void func2(int N) {
int count = 0;
for (int k = 0; k < 2 * N ; k++) {
count++;
}
int M = 10;
while ((M--) > 0) {
count++;
}
System.out.println(count);
}
执行了 2N+10 次,通过推导大 O 阶方法知道,时间复杂度为 O(N)

// 计算 func3 的时间复杂度?
void func3(int N, int M) {
int count = 0;
for (int k = 0; k < M; k++) {
count++;
}
for (int k = 0; k < N ; k++) {
count++;
}
System.out.println(count);
}
执行了 M+N 次,有两个未知数 M 和 N ,时间复杂度为 O(N+M)

// 计算 func4 的时间复杂度?
void func4(int N) {
int count = 0;
for (int k = 0; k < 100; k++) {
count++;
}
System.out.println(count);
}
执行了 100 次,通过推导大 O 阶方法,时间复杂度为 O(1)

// 计算 bubbleSort 的时间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
执行最好 N 次,最坏执行了 (N*(N-1))/2 次,通过推导大 O 阶方法 + 时间复杂度一般看最坏,时间
复杂度为 O(N^2)

// 计算 binarySearch 的时间复杂度?
int binarySearch(int[] array, int value) {
int begin = 0;
int end = array.length - 1;
while (begin <= end) {
int mid = begin + ((end-begin) / 2);
if (array[mid] < value)
begin = mid + 1;
else if (array[mid] > value)
end = mid - 1;
else
return mid;
}
return -1;
}
时间复杂度为 O(logN)

// 计算阶乘递归 factorial 的时间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1) * N;
}
操作递归了 N 次,时间复杂度为 O(N) 。

**2.**空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度

// 计算 bubbleSort 的空间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
使用了常数个额外空间,所以空间复杂度为 O(1)

// 计算 fibonacci 的空间复杂度?
int[] fibonacci(int n) {
long[] fibArray = new long[n + 1];
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
动态开辟了 N 个空间,空间复杂度为 O(N)

// 计算阶乘递归 Factorial 的空间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1)*N;
}
3 递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)

相关推荐
熬夜学编程的小王1 小时前
【C++篇】深度解析 C++ List 容器:底层设计与实现揭秘
开发语言·数据结构·c++·stl·list
阿史大杯茶1 小时前
AtCoder Beginner Contest 381(ABCDEF 题)视频讲解
数据结构·c++·算法
Chris _data2 小时前
二叉树oj题解析
java·数据结构
Lenyiin3 小时前
02.06、回文链表
数据结构·leetcode·链表
爪哇学长3 小时前
双指针算法详解:原理、应用场景及代码示例
java·数据结构·算法
爱摸鱼的孔乙己3 小时前
【数据结构】链表(leetcode)
c语言·数据结构·c++·链表·csdn
烦躁的大鼻嘎3 小时前
模拟算法实例讲解:从理论到实践的编程之旅
数据结构·c++·算法·leetcode
C++忠实粉丝4 小时前
计算机网络socket编程(4)_TCP socket API 详解
网络·数据结构·c++·网络协议·tcp/ip·计算机网络·算法
daiyang123...5 小时前
测试岗位应该学什么
数据结构
kitesxian5 小时前
Leetcode448. 找到所有数组中消失的数字(HOT100)+Leetcode139. 单词拆分(HOT100)
数据结构·算法·leetcode