P(查准率) R(查全率) AP mAP最通俗准确的讲解

学习YOLO的过程中遇到了mAP指标,在网上看了很多关于mAP的讲解,不是很理解其计算过程,于是总结了各个帖子及自己的理解,给出mAP计算的规律,这样就能很好的记忆。

目录

[一、P(精确率)、R(召回率)和F1 Score](#一、P(精确率)、R(召回率)和F1 Score)

二、PR曲线

三、AP和mAP

一、P(精确率)、R(召回率)和F1 Score

  • True Positive(TP): 预测对了。预测为正,实际为正。

  • False Negative(FN): 预测错了。 预测为负,实际为正。

  • False Positive(FP): 预测错了。预测为正,实际为负。

  • True Negative(TN): 预测对了。预测为负,实际为负。(在目标检测问题中,由于模型通常不会明确标记非目标的所有背景区域,所以通常不会计算TN)

有T就是对,有F就是错。

P: Precision,精确率,也叫查准率。预测为正类的样本中确实为正类的比例。

R:Recall,召回率,也叫查全率。所有实际正类中,有多少正类被预测出来。

F1 Score:是精确率和召回率的调和平均数,是一种兼顾精确率和召回率的综合指标。

举个例子:一张图片中总共有10只猫咪,模型显示检测到了5只猫咪,但是检测到的其中只有4个是猫咪,另外一只实际上是小狗。

此时TP=4(检测到的4只猫咪是真猫咪),FN=6(没能检测到剩下的真实的6只猫咪), FP=1(误将1只小狗检测成小猫)。

此时P = 4/5 = 0.8,R = 4/10 = 0.6,F1 Score = 2X(0.8X0.6)/(0.8+0.6) = 0.686。

一般来说,P 和 R 是相互制约的,一个越高另一个就越低。

因为查准率只关注预测出的正类中有多少是真的,而查全率关注实际上所有的正类中模型检测出来多少。如果我的模型只关注查全率不关注查准率,我将所有物体都识别为正类,那么确实所有小猫都检测到了,但是不准确。

二、PR曲线

当你训练好一个分类算法后,它会对每个输入样本给出一个置信度评分,这个评分表示该样本是正类的概率。例如,算法认为样本A有99%的可能性是正类,而样本B只有1%的可能性是正类。

我们设定一个阈值,比如50%,来决定哪个样本被划分为正类,哪个样本被划分为负类。如果一个样本的置信度评分超过50%,我们就把它看作是正类;如果低于50%,则视为负类。

然后,可以按照置信度评分对所有样本进行排序。从置信度最高的样本开始,每次选取一个样本作为新的阈值。例如,首先选择置信度最高的样本A作为阈值,那么所有比样本A置信度高的样本都被认为是正类,其他样本则是负类。接着,计算当前状态下模型的精确率和召回率。

接着,继续选择下一个置信度稍低的样本B作为阈值,再次计算精确率和召回率。重复这个过程,直到遍历完所有样本。这样,就得到了一系列的精确率和召回率值,每个值对应着一个不同的阈值。

最后,把这些精确率和召回率值连接起来,就形成了一个 PR 曲线。这条曲线显示了随着阈值的变化,模型的精确率和召回率是如何变化的。

随着阈值的下降,recall值是递增的(但并非严格递增),因为实际为正类的对象会越来越多的被检测为正类,不会减少 。而精确率precision并非递减,而是有可能振荡的,虽然正例被判为正例的变多,但负例被判为正例的也变多了,因此precision会振荡,但整体趋势是下降。

三、AP和mAP

虽然 PR 曲线提供了关于模型性能的直观信息,但它并没有提供一个单一的数值来概括整个曲线的表现。

平均精度(Average Precision, AP)平均精度是一种统计量,AP 是 PR 曲线上各点的精确率的平均值,每个精确率值乘以其对应的召回率的增量。。

口语化解释就是:

通过选取每个recall及其对应的precision,绘制出PR曲线。然后,对于每个recall值,计算下一个recall与当前recall之间的差值,并乘以从当前recall到之后的所有recall对应的最大precision值。重复这一过程直到遍历所有recall值,将这些值相加就得到了某个类别的AP (Average Precision)。(recall相同的点去precision最高的点)

举个图中特殊的点(框起来那个),此时下一个recall为0.71,当前recall为0.57,从当前recall开始(包括当前recall)一直到最后的recall中对应的precision最高为0.71,所以为(0.71-0.57)*0.71。

mAP:得到了不同类别的AP,取这些AP的平均值就是mAP。

相关推荐
学术头条6 分钟前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
准橙考典7 分钟前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
ai_xiaogui10 分钟前
AIStarter教程:快速学会卸载AI项目【AI项目管理平台】
人工智能·ai作画·语音识别·ai写作·ai软件
孙同学要努力15 分钟前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
AI街潜水的八角29 分钟前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
喵~来学编程啦1 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司1 小时前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_2 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141652 小时前
Ascend Extension for PyTorch的源码解析
人工智能