李沐--动手学深度学习GoogLeNet

1.框架理论

2.模型参数演变过程

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

#在Inception块中,通常调整的超参数是每层输出通道数。
class Inception(nn.Module):
     #c1--c4是每条路径的输出通道数
     def __init__(self,in_channels,c1,c2,c3,c4,**kwargs):
         super(Inception,self).__init__(**kwargs)
         #线路1,单1x1卷积层
         self.p1_1 = nn.Conv2d(in_channels,c1,kernel_size=1)
         #线路2,1x1卷积层后接3x3卷积层
         self.p2_1 = nn.Conv2d(in_channels,c2[0],kernel_size=1)
         self.p2_2 = nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)
         #线路3,1x1卷积层后接5x5卷积层
         self.p3_1 = nn.Conv2d(in_channels,c3[0],kernel_size=1)
         self.p3_2 = nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)
         #线路4,3x3最大汇聚层后接1x1卷积层
         self.p4_1 = nn.MaxPool2d(kernel_size=3,stride=1,padding=1)
         self.p4_2 = nn.Conv2d(in_channels,c4,kernel_size=1)

     def forward(self,x):
         p1 = F.relu(self.p1_1(x))
         p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
         p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
         p4 = F.relu(self.p4_2(self.p4_1(x)))
         #在通道维度上连结输出
         return torch.cat((p1,p2,p3,p4),dim=1)

#第一个模块使用64个通道、7*7卷积层
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#第二个模块使用两个卷积层:这对应于Inception块中的第二条路径。
#第一个卷积层是64个通道、1*1卷积层;
#第二个卷积层使用将通道数量增加三倍的3*3卷积层。
b2 = nn.Sequential(nn.Conv2d(64,64,kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64,192,kernel_size=3,padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#第三个模块串联两个完整的Inception块。
b3 = nn.Sequential(Inception(192,64,(96,128),(16,32),32),
                   Inception(256,128,(128,192),(32,96),64),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#第四模块更加复杂,串联了5个Inception块.
b4 = nn.Sequential(Inception(480,192,(96,208),(16,48),64),
                   Inception(512,160,(112,224),(24,64),64),
                   Inception(512,128,(128,256),(24,64),64),
                   Inception(512,112,(144,288),(32,64),64),
                   Inception(528,256,(160,320),(32,128),128),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#第五模块包含输出通道数为...和...的两个Inception块。
b5 = nn.Sequential(Inception(832,256,(160,320),(32,128),128),
                   Inception(832,384,(192,384),(48,128),128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())
net = nn.Sequential(b1,b2,b3,b4,b5,nn.Linear(1024,10))


X = torch.rand(size=(1,1,96,96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)

3.模型训练

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

#在Inception块中,通常调整的超参数是每层输出通道数。
class Inception(nn.Module):
     #c1--c4是每条路径的输出通道数
     def __init__(self,in_channels,c1,c2,c3,c4,**kwargs):
         super(Inception,self).__init__(**kwargs)
         #线路1,单1x1卷积层
         self.p1_1 = nn.Conv2d(in_channels,c1,kernel_size=1)
         #线路2,1x1卷积层后接3x3卷积层
         self.p2_1 = nn.Conv2d(in_channels,c2[0],kernel_size=1)
         self.p2_2 = nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)
         #线路3,1x1卷积层后接5x5卷积层
         self.p3_1 = nn.Conv2d(in_channels,c3[0],kernel_size=1)
         self.p3_2 = nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)
         #线路4,3x3最大汇聚层后接1x1卷积层
         self.p4_1 = nn.MaxPool2d(kernel_size=3,stride=1,padding=1)
         self.p4_2 = nn.Conv2d(in_channels,c4,kernel_size=1)

     def forward(self,x):
         p1 = F.relu(self.p1_1(x))
         p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
         p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
         p4 = F.relu(self.p4_2(self.p4_1(x)))
         #在通道维度上连结输出
         return torch.cat((p1,p2,p3,p4),dim=1)

#第一个模块使用64个通道、7*7卷积层
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#第二个模块使用两个卷积层:这对应于Inception块中的第二条路径。
#第一个卷积层是64个通道、1*1卷积层;
#第二个卷积层使用将通道数量增加三倍的3*3卷积层。
b2 = nn.Sequential(nn.Conv2d(64,64,kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64,192,kernel_size=3,padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#第三个模块串联两个完整的Inception块。
b3 = nn.Sequential(Inception(192,64,(96,128),(16,32),32),
                   Inception(256,128,(128,192),(32,96),64),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#第四模块更加复杂,串联了5个Inception块.
b4 = nn.Sequential(Inception(480,192,(96,208),(16,48),64),
                   Inception(512,160,(112,224),(24,64),64),
                   Inception(512,128,(128,256),(24,64),64),
                   Inception(512,112,(144,288),(32,64),64),
                   Inception(528,256,(160,320),(32,128),128),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#第五模块包含输出通道数为...和...的两个Inception块。
b5 = nn.Sequential(Inception(832,256,(160,320),(32,128),128),
                   Inception(832,384,(192,384),(48,128),128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())
net = nn.Sequential(b1,b2,b3,b4,b5,nn.Linear(1024,10))

'''
X = torch.rand(size=(1,1,96,96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)
'''

#使用Fashion-MNIST数据集来训练我们的模型。在训练之前,将图片转换为96X96分辨率。
lr,num_epochs,batch_size = 0.1,10,128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=96)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
相关推荐
聚客AI1 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar1 小时前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生2 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队2 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁3 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊4 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元5 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒5 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生5 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报6 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc