Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习

机器学习(Machine Learning, ML):机器具有学习的能力,即让机器具备找一个函数的能力

函数不同,机器学习的类别不同:

回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的P M2.5的值。

分类(classification):让机器做选择题,先准备一些选项(类别class),机器要找到的的函数会从设定好的选项里边选择一个当作输出。例如:在邮箱账户里设置垃圾邮件检测规则,这套规则就可以看作输出邮件是否为垃圾邮件的函数

除了回归和分类还有结构化学习(structured learning),机器不仅要做选择题或者输出一个数字,还要产生一个有结构的结果,比如一张图或者一篇文章等。让机器产生有结构的结果的学习过程称为结构化学习。

机器学习的3个过程:

Step1: 写出带有未知参数(parameter)的函数,这个函数称为模型(model)。模型在机器学习中就是一个带有未知参数的函数,特征(feature)是这个函数里边已知的信息,w为权重,b为偏置。

Step2: 定义损失(loss),损失也是一个函数,记为L(b, w) 用于评判模型的参数是否合适。

真实值称为标签(Label)

估测值跟真实值之间的差距

计算二者差的绝对值称为平均绝对误差(Mean Absolute Error, MAE) e=|ŷ-y|

计算二者差的平方称为均方误差(Mean Squared Error, MSE)e=(ŷ-y)2

其中的y和ŷ都是概率分布,这个时候可能会选择计算交叉熵(cross entropy)

Step3: 解一个优化问题,即找到最好的一对(w, b),使损失L的值最小,用(w*, b*),代表最好的一对(w, b)

线性回归:

  • 损失函数:均方误差(Mean Squared Error,MSE)
  • L关于w的方程:
  • L关于w的偏导数:

逻辑回归:

  • 损失函数:交叉熵损失(Cross-Entropy Loss)
  • L关于w的方程:
  • L关于w的偏导数
相关推荐
EasyCVR1 天前
视频融合平台EasyCVR在智慧水利中的实战应用:构建全域感知与智能预警平台
人工智能·音视频
DisonTangor1 天前
阿里开源Qwen3-Omni-30B-A3B三剑客——Instruct、Thinking 和 Captioner
人工智能·语言模型·开源·aigc
独孤--蝴蝶1 天前
AI人工智能-机器学习-第一周(小白)
人工智能·机器学习
西柚小萌新1 天前
【深入浅出PyTorch】--上采样+下采样
人工智能·pytorch·python
丁学文武1 天前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
fie88891 天前
基于MATLAB的声呐图像特征提取与显示
开发语言·人工智能
文火冰糖的硅基工坊1 天前
[嵌入式系统-100]:常见的IoT(物联网)开发板
人工智能·物联网·架构
刘晓倩1 天前
实战任务二:用扣子空间通过任务提示词制作精美PPT
人工智能
shut up1 天前
LangChain - 如何使用阿里云百炼平台的Qwen-plus模型构建一个桌面文件查询AI助手 - 超详细
人工智能·python·langchain·智能体
Hy行者勇哥1 天前
公司全场景运营中 PPT 的类型、功能与作用详解
大数据·人工智能