Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习

机器学习(Machine Learning, ML):机器具有学习的能力,即让机器具备找一个函数的能力

函数不同,机器学习的类别不同:

回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的P M2.5的值。

分类(classification):让机器做选择题,先准备一些选项(类别class),机器要找到的的函数会从设定好的选项里边选择一个当作输出。例如:在邮箱账户里设置垃圾邮件检测规则,这套规则就可以看作输出邮件是否为垃圾邮件的函数

除了回归和分类还有结构化学习(structured learning),机器不仅要做选择题或者输出一个数字,还要产生一个有结构的结果,比如一张图或者一篇文章等。让机器产生有结构的结果的学习过程称为结构化学习。

机器学习的3个过程:

Step1: 写出带有未知参数(parameter)的函数,这个函数称为模型(model)。模型在机器学习中就是一个带有未知参数的函数,特征(feature)是这个函数里边已知的信息,w为权重,b为偏置。

Step2: 定义损失(loss),损失也是一个函数,记为L(b, w) 用于评判模型的参数是否合适。

真实值称为标签(Label)

估测值跟真实值之间的差距

计算二者差的绝对值称为平均绝对误差(Mean Absolute Error, MAE) e=|ŷ-y|

计算二者差的平方称为均方误差(Mean Squared Error, MSE)e=(ŷ-y)2

其中的y和ŷ都是概率分布,这个时候可能会选择计算交叉熵(cross entropy)

Step3: 解一个优化问题,即找到最好的一对(w, b),使损失L的值最小,用(w*, b*),代表最好的一对(w, b)

线性回归:

  • 损失函数:均方误差(Mean Squared Error,MSE)
  • L关于w的方程:
  • L关于w的偏导数:

逻辑回归:

  • 损失函数:交叉熵损失(Cross-Entropy Loss)
  • L关于w的方程:
  • L关于w的偏导数
相关推荐
驭白.1 分钟前
当硬件成为载体:制造端如何支撑持续的OTA与功能进化?
大数据·人工智能·ai·制造·数字化转型·制造业·新能源汽车
北京耐用通信3 分钟前
耐达讯自动化Profibus光纤中继模块实现冶金车间长距离抗干扰通信
人工智能·物联网·网络协议·自动化·信息与通信
zy_destiny3 分钟前
SegEarth-OV系列(二):面向遥感图像的无训练开放词汇分割
人工智能·深度学习·算法·机器学习·计算机视觉·语义分割·开放词汇
NCU_wander5 分钟前
RAG Embedding Reranker 、Bert、CLIP&T5
人工智能·深度学习·bert
武汉唯众智创7 分钟前
基于大语言模型的自助式 AI 心理咨询系统
人工智能·语言模型·自然语言处理·大语言模型·自助式 ai 心理咨询系统·ai 心理咨询系统·ai 心理咨询
Python_Study202511 分钟前
制造业数字化转型中的数据采集系统:技术挑战、架构方案与实施路径
大数据·网络·数据结构·人工智能·架构
敲上瘾12 分钟前
用Coze打造你的专属AI应用:从智能体到Web部署指南
前端·人工智能·python·阿里云·aigc
BD同步13 分钟前
铷原子频率标准设备存在的意义是什么
大数据·数据库·人工智能
Benaldo_Y13 分钟前
大语言模型(LLM)
人工智能·语言模型·自然语言处理
wechat_Neal14 分钟前
综述文章☞组合驾驶辅助汽车事故的人机交互问题
人工智能·车载系统·人机交互