Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习

机器学习(Machine Learning, ML):机器具有学习的能力,即让机器具备找一个函数的能力

函数不同,机器学习的类别不同:

回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的P M2.5的值。

分类(classification):让机器做选择题,先准备一些选项(类别class),机器要找到的的函数会从设定好的选项里边选择一个当作输出。例如:在邮箱账户里设置垃圾邮件检测规则,这套规则就可以看作输出邮件是否为垃圾邮件的函数

除了回归和分类还有结构化学习(structured learning),机器不仅要做选择题或者输出一个数字,还要产生一个有结构的结果,比如一张图或者一篇文章等。让机器产生有结构的结果的学习过程称为结构化学习。

机器学习的3个过程:

Step1: 写出带有未知参数(parameter)的函数,这个函数称为模型(model)。模型在机器学习中就是一个带有未知参数的函数,特征(feature)是这个函数里边已知的信息,w为权重,b为偏置。

Step2: 定义损失(loss),损失也是一个函数,记为L(b, w) 用于评判模型的参数是否合适。

真实值称为标签(Label)

估测值跟真实值之间的差距

计算二者差的绝对值称为平均绝对误差(Mean Absolute Error, MAE) e=|ŷ-y|

计算二者差的平方称为均方误差(Mean Squared Error, MSE)e=(ŷ-y)2

其中的y和ŷ都是概率分布,这个时候可能会选择计算交叉熵(cross entropy)

Step3: 解一个优化问题,即找到最好的一对(w, b),使损失L的值最小,用(w*, b*),代表最好的一对(w, b)

线性回归:

  • 损失函数:均方误差(Mean Squared Error,MSE)
  • L关于w的方程:
  • L关于w的偏导数:

逻辑回归:

  • 损失函数:交叉熵损失(Cross-Entropy Loss)
  • L关于w的方程:
  • L关于w的偏导数
相关推荐
TG:@yunlaoda360 云老大3 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗3 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
im_AMBER4 小时前
React 17
前端·javascript·笔记·学习·react.js·前端框架
谷歌开发者5 小时前
Web 开发指向标 | Chrome 开发者工具学习资源 (六)
前端·chrome·学习
兴趣使然黄小黄6 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭6 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t6 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite
QT 小鲜肉7 小时前
【QT/C++】Qt定时器QTimer类的实现方法详解(超详细)
开发语言·数据库·c++·笔记·qt·学习
说私域7 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序
开利网络7 小时前
合规底线:健康产品营销的红线与避坑指南
大数据·前端·人工智能·云计算·1024程序员节