基础数据结构
一.栈
1.普通栈
套路:从前往后遍历 + 需要考虑相邻元素 + 有消除操作 = 栈。
2.单调栈
二.队列
1.普通队列
2.优先队列
三.Trie
使用场景:可以求某个字符串在众多字符串中出现的次数,以某个字符串为前缀出现的次数
Trie中,Trie数组是必须得,其他的根据业务场景决定(如:isEnd,count等)
模版1
java
class Trie {
Trie[] children;
boolean isEnd;
public Trie() {
children = new Trie[26];
isEnd = false;
}
public void insert(String word) {
Trie node = this;
for(char c : word.toCharArray()){
int index = c - 'a';
if(node.children[index]==null){
node.children[index] = new Trie();
}
node = node.children[index];
}
node.isEnd = true;
}
public boolean search(String word) {
Trie node = this;
for(char c : word.toCharArray()){
int index = c - 'a';
if(node.children[index]==null){
return false;
}
node = node.children[index];
}
return node.isEnd;
}
public boolean startsWith(String prefix) {
Trie node = this;
for(char c : prefix.toCharArray()){
int index = c - 'a';
if(node.children[index]==null){
return false;
}
node = node.children[index];
}
return true;
}
}
/**
* Your Trie object will be instantiated and called as such:
* Trie obj = new Trie();
* obj.insert(word);
* boolean param_2 = obj.search(word);
* boolean param_3 = obj.startsWith(prefix);
*/
模版2
java
class Trie {
Trie[] child = new Trie[26];
int ref = -1;
void insert(String word, int ref) {
Trie node = this;
for (char c : word.toCharArray()) {
int index = c - 'a';
if (node.child[index] == null) {
node.child[index] = new Trie();
}
node = node.child[index];
}
node.ref = ref;
}
int search(String word) {
Trie node = this;
for (char c : word.toCharArray()) {
int index = c - 'a';
if (node.child[index] == null) {
return -1;
}
node = node.child[index];
//注意:判断都是在node = node.child[index];之后判断
if (node.ref != -1) {
return node.ref;
}
}
return -1;
}
}
四.并查集
1.逆序思维,删除--合并
2.传递性
1.普通并查集
java
class UF{
int[] parent;
int[] size;
int count ;
UF(int n){
parent = new int[n];
size = new int[n];
count = n;
for(int i = 0;i<n;i++){
parent[i] = i;
size[i] = 1;
}
}
void union(int p,int q){
int rootP = find(p);
int rootQ = find(q);
if(rootP==rootQ){
return;
}
if(size[rootP]>size[rootQ]){
parent[rootQ] = rootP;
size[rootP] += size[rootQ];
}else{
parent[rootP] = rootQ;
size[rootQ] += size[rootP];
}
count--;
}
int find(int x){
if(parent[x]!=x){
parent[x] = find(parent[x]);
}
return parent[x];
}
boolean connect(int p,int q){
return find(p)==find(q);
}
int size(int x){
return size[x];
}
int count(){
return count;
}
}
2.map实现并查集
java
class Solution {
public boolean areSentencesSimilarTwo(String[] sentence1, String[] sentence2, List<List<String>> similarPairs) {
UF uf = new UF();
for(List<String> str : similarPairs){
uf.union(str.get(0),str.get(1));
}
int m = sentence1.length;
int n = sentence2.length;
if(m!=n){
return false;
}
for(int i = 0;i<n;i++){
if(!uf.connected(sentence1[i],sentence2[i])){
return false;
}
}
return true;
}
}
class UF{
HashMap<String,String> map = new HashMap<>();
void union(String p,String q){
String rootP = find(p);
String rootQ = find(q);
if(!rootP.equals(rootQ)){
map.put(rootP,rootQ);
}
}
boolean connected(String p,String q){
return find(p).equals(find(q));
}
String find(String x){
while(map.containsKey(x)&&map.get(x)!=x){
x = map.get(x);
}
return x;
}
}
3.并查集结合map记录父结点信息
java
class Solution {
public String smallestStringWithSwaps(String s, List<List<Integer>> pairs) {
int n = s.length();
UF uf = new UF(n);
for(List<Integer> list : pairs){
uf.union(list.get(0),list.get(1));
}
HashMap<Integer,PriorityQueue<Character>> map = new HashMap<>();
for(int i = 0;i<n;i++){
int j = uf.find(i);
map.computeIfAbsent(j,k->new PriorityQueue<>()).offer(s.charAt(i));
}
StringBuilder sb = new StringBuilder();
for(int i = 0;i<n;i++){
PriorityQueue<Character> q = map.get(uf.find(i));
sb.append(q.poll());
}
return sb.toString();
}
}
class UF{
int[] parent;
UF(int n){
parent = new int[n];
for(int i = 0;i<n;i++){
parent[i] = i;
}
}
void union(int p,int q){
int rootP = find(p);
int rootQ = find(q);
if(rootP==rootQ){
return;
}
parent[rootP] = rootQ;
}
int find(int x){
if(x!=parent[x]){
parent[x] = find(parent[x]);
}
return parent[x];
}
}
4.公因数并查集
java
class Solution {
public boolean canTraverseAllPairs(int[] nums) {
UF uf = new UF(100001);
if(nums.length==1){
return true;
}
for(int num : nums){
if(num==1){
return false;
}
int t = num;
for(int i = 2;i*i<=num;i++){
if(num%i==0){
uf.union(t,i);
while(num%i==0){
num /= i;
}
}
if(num>1){
uf.union(t,num);
}
}
}
int r = uf.find(nums[0]);
for(int num : nums){
if(uf.find(num)!=r){
return false;
}
}
return true;
}
}
class UF{
int[] parent;
UF(int n){
parent = new int[n];
for(int i = 0;i<n;i++){
parent[i] = i;
}
}
void union(int p,int q){
int rootP = find(p);
int rootQ = find(q);
if(rootP==rootQ){
return;
}
parent[rootP] = rootQ;
}
int find(int x){
if(x!=parent[x]){
parent[x] = find(parent[x]);
}
return parent[x];
}
}
5.边权并查集
java
class Solution {
public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {
int n = equations.size();
UF uf = new UF(2 * n);
HashMap<String, Integer> map = new HashMap<>();
int id = 0;
for (int i = 0; i < n; i++) {
List<String> equation = equations.get(i);
String val1 = equation.get(0);
String val2 = equation.get(1);
if (!map.containsKey(val1)) {
map.put(val1, id);
id++;
}
if (!map.containsKey(val2)) {
map.put(val2, id);
id++;
}
uf.union(map.get(val1), map.get(val2), values[i]);
}
int queriesSize = queries.size();
double[] res = new double[queriesSize];
for (int i = 0; i < queriesSize; i++) {
String val1 = queries.get(i).get(0);
String val2 = queries.get(i).get(1);
Integer id1 = map.get(val1);
Integer id2 = map.get(val2);
if (id1 == null || id2 == null) {
res[i] = -1.0;
} else {
res[i] = uf.isConnected(id1, id2);
}
}
return res;
}
}
class UF {
int[] parent;
double[] weight;
UF(int n) {
parent = new int[n];
weight = new double[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
weight[i] = 1.0;
}
}
void union(int p, int q, double value) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ) {
return;
}
parent[rootP] = rootQ;
weight[rootP] = weight[q] * value / weight[p];
}
int find(int x) {
if (x != parent[x]) {
int origin = parent[x];
parent[x] = find(parent[x]);
weight[x] *= weight[origin];
}
return parent[x];
}
double isConnected(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ) {
return weight[p] / weight[q];
}
return -1.0;
}
}
相关题目:
1.LeetCode
2.LeetCode
3.LeetCode