机器学习(有监督和无监督)

在机器学习中,有监督学习和无监督学习是两种主要的学习范式,它们有不同的目标和应用场景。下面是对这两种学习类型的详细介绍:

一、有监督学习 (Supervised Learning)

定义:

有监督学习是一种机器学习任务,其中模型在训练时使用带有标签的数据集来学习。训练数据集的每个输入样本都有一个对应的输出标签,模型通过这些输入输出对来学习如何映射输入到输出。

目标:

通过学习训练数据中的输入和输出关系,使得模型能够对新的、未见过的数据做出准确的预测。

应用场景:

分类任务: 将输入数据分类到预定义的类别中。例如,垃圾邮件检测(识别邮件是否是垃圾邮件)和图像分类(识别图像中的物体)。

回归任务: 预测连续值。例如,房价预测(根据特征预测房屋的市场价格)和气温预测(根据历史数据预测未来的气温)。

常见算法:

线性回归(Linear Regression)

逻辑回归(Logistic Regression)

支持向量机(Support Vector Machine, SVM)

决策树(Decision Tree)

随机森林(Random Forest)

K 近邻算法(KNearest Neighbors, KNN)

神经网络(Neural Networks)

二、无监督学习 (Unsupervised Learning)

定义:

无监督学习是一种机器学习任务,其中模型在训练时使用未标记的数据集。训练数据集没有明确的输出标签,模型的目标是从数据中发现隐藏的模式或结构。

目标:

从数据中自动提取信息,识别数据的内在结构或特征,而不依赖于预先定义的标签。

应用场景:

聚类任务: 将数据分成不同的组或簇,使得同一组中的数据点相似度高,不同组的数据点相似度低。例如,客户细分(根据购买行为将客户分成不同的群体)和图像分割(将图像分成不同的区域)。

降维任务: 减少数据的维度,同时保留尽可能多的信息。例如,主成分分析(Principal Component Analysis, PCA)和特征选择。

异常检测: 识别数据中的异常或不规则点。例如,欺诈检测(检测金融交易中的异常活动)和故障检测(监控设备状态以发现潜在故障)。

常见算法:

Kmeans 聚类(Kmeans Clustering)

层次聚类(Hierarchical Clustering)

主成分分析(Principal Component Analysis, PCA)

独立成分分析(Independent Component Analysis, ICA)

孤立森林(Isolation Forest)

自编码器(Autoencoders)

三、 比较总结

数据标签:

有监督学习使用带标签的数据,学习输入与输出之间的映射;无监督学习使用未标记的数据,寻找数据内部的结构或模式。

目标:

有监督学习的目标是进行预测或分类;无监督学习的目标是数据探索和特征提取。

结果评估: 有监督学习的结果可以通过准确率、精度、召回率等评估;无监督学习的结果评估更为复杂,通常依赖于具体应用的效果和领域知识。

理解这两种学习方法有助于选择合适的算法来解决实际问题。在实际应用中,有时会结合这两种方法进行更全面的数据分析和建模。

相关推荐
vocal2 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua3 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter11 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
IT_Octopus23 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能28 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客33 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条41 分钟前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po42 分钟前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条42 分钟前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理
孔令飞1 小时前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go