【深度学习与NLP】——深度卷积神经网络AlexNet

目录

一、卷积神经网络的发展历程

二、简要介绍

三、代码实现

四、缺点和过时的地方


一、卷积神经网络的发展历程

  1. 早期理论基础阶段(20 世纪 60 年代 - 80 年代)
    • 1968 年,Hubel 和 Wiesel 通过对猫视觉神经的研究,发现了视觉神经元对图像边缘的响应特性,提出了感受野的概念,为卷积神经网络的发展奠定了生物学基础 3。
    • 1980 年,日本科学家福岛邦彦提出了 Neocognitron,它模拟了脑神经科学的结构,具备现代 CNN 的一些基本元素,如逐步的滤波器、使用 ReLU 提供非线性、平均池化下采样等,保证了网络的平移不变性,实现了稀疏交互,但无法进行有监督学习。
  2. 初步发展阶段(20 世纪 90 年代)
    • 1990 年,Yann LeCun 将反向传播算法应用到类似 Neocognitron 的网络上,实现了一个用于手写数字识别的神经网络,简化了卷积操作以便于反向传播的应用,这是 CNN 用于有监督学习的早期重要实践。
    • 1998 年,Yann LeCun 提出 LeNet - 5,这是具有里程碑意义的 CNN 架构。LeNet - 5 定义了 CNN 的基本框架,包括卷积层、池化层和全连接层,在手写数字识别任务上取得了良好效果。不过,当时受限于计算机算力和数据量,其应用范围相对有限。
  3. 沉寂阶段(2000 年 - 2011 年):这一时期,由于计算资源有限、数据集规模较小以及其他机器学习方法(如支持向量机)的竞争等原因,卷积神经网络的发展相对缓慢,处于沉寂状态。
  4. 复兴与突破阶段(2012 年 - 至今)
    • 2012 年,AlexNet 诞生。它在当年的 ImageNet 大规模视觉识别挑战赛中以显著优势夺冠,标志着神经网络的复苏和深度学习的崛起。AlexNet 采用了更深的网络结构,使用 ReLU 激活函数、数据增强、mini - batch SGD 优化、在 GPU 上训练以及 Dropout 技术来避免过拟合等创新方法,极大地推动了 CNN 的发展,也让更多研究者关注到深度学习的潜力 。
    • 2014 年,VGGNet 被提出,它通过增加网络深度(如 VGG - 16、VGG - 19),证明了增加网络深度可以提升模型性能,为后续研究提供了思路。
    • 2015 年,ResNet 出现,它通过引入残差结构,有效解决了随着网络深度增加而导致的梯度消失问题,使得训练更深的网络成为可能,并且第一个在 ImageNet 图片分类上表现超过人类水准,将 CNN 的性能推向新高度。此后,各种基于 ResNet 的改进和衍生模型不断涌现。
    • 2017 年,SENet 提出,通过引入注意力机制,让网络能够自适应地关注重要特征,进一步提升了模型的性能和表达能力。
    • 近年来,CNN 不断与其他技术融合,如与生成对抗网络(GAN)结合用于图像生成、与强化学习结合用于智能决策等,同时在自动驾驶、医疗影像分析、智能安防等众多领域得到广泛应用,且随着硬件计算能力的持续提升和大规模数据集的不断丰富,其性能和应用场景还在不断拓展和深化。

二、简要介绍

AlexNet 是一种深度卷积神经网络,在 2012 年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中取得了突破性的成果。

1. 网络结构

AlexNet 包含 8 层,其中前 5 层为卷积层,后 3 层为全连接层。具体结构如下:

  1. 第一层:卷积层,使用 96 个大小为 11×11×3 的卷积核,步长为 4。
  2. 第二层:最大池化层,池化窗口大小为 3×3,步长为 2。
  3. 第三层:卷积层,使用 256 个大小为 5×5 的卷积核。
  4. 第四层:最大池化层,池化窗口大小为 3×3,步长为 2。
  5. 第五层:卷积层,使用 384 个大小为 3×3 的卷积核。
  6. 第六层:卷积层,使用 384 个大小为 3×3 的卷积核。
  7. 第七层:卷积层,使用 256 个大小为 3×3 的卷积核。
  8. 第八层:全连接层,包含 4096 个神经元。最后两层全连接层也分别有 4096 个神经元,输出层则根据具体任务确定神经元数量。

2. 特点

  1. 非线性激活函数

    使用 ReLU(Rectified Linear Unit)作为激活函数,相比传统的 sigmoid 和 tanh 函数,ReLU 能够加速训练过程,并且在一定程度上缓解了梯度消失问题。

  2. 数据增强

    通过对图像进行随机裁剪、水平翻转等操作,增加了数据的多样性,提高了模型的泛化能力。

  3. Dropout

    在训练过程中随机将一些神经元的输出置为 0,有效地减少了过拟合。

  4. 多 GPU 训练

由于网络规模较大,训练数据也很多,AlexNet 采用了多 GPU 并行训练的方式,加快了训练速度。

3. 影响

AlexNet 的出现极大地推动了深度学习在计算机视觉领域的发展。它证明了深度神经网络在图像识别等任务上的强大能力,为后续的研究提供了重要的参考和启示。此后,各种深度神经网络架构不断涌现,性能也不断提升。总之,AlexNet 是深度学习发展历程中的一个重要里程碑,它的创新之处和优异性能对计算机视觉领域产生了深远的影响。

三、代码实现

复制代码
 AlexNet 网络特点
它在多方面使用了创新性的结构 ;
(1)提出了 非饱和神经元 ReLU 减小 梯度下降 的训练时间;
(2)提用了 多GPU并行卷积操作 实现模型训练 加速 ;
(3)提用了 LRN(Local Response Normalization) 实现局部响应 归一化 ;
(4)提出了 Overlapping Pooling 使用 stride=2,kernal_size=3 使池化重叠,优于之前的 stride=2,kernal_size=2 ;
(5)引入了 dropout 正则化方法减少 全连接层中的 过拟合 ;
(6)此外,还采用 数据增强 的方法扩充数据集用以减小 过拟合 线性;
论文中 数据增强 采用的方式 :1、图像的平移和水平旋转;2、改变图像RGB通道的强度;

实现代码:

python 复制代码
import torch
import torch.nn as nn
from torchinfo import summary

# 定义 AlexNet 类,继承自 nn.Module
class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        # 调用父类的初始化方法
        super(AlexNet, self).__init__()
        # 定义特征提取部分的网络结构
        self.features = nn.Sequential(
            # 第一个卷积层,输入通道数为 3(彩色图像),输出通道数为 48,卷积核大小为 11x11,步长为 4,填充为 2
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),
            # 使用 ReLU 激活函数,inplace=True 表示在原张量上进行操作,节省内存
            nn.ReLU(inplace=True),
            # 第一个最大池化层,池化核大小为 3x3,步长为 2
            nn.MaxPool2d(kernel_size=3, stride=2),
            # 第二个卷积层,输入通道数为 48,输出通道数为 128,卷积核大小为 5x5,填充为 2
            nn.Conv2d(48, 128, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            # 第二个最大池化层,池化核大小为 3x3,步长为 2
            nn.MaxPool2d(kernel_size=3, stride=2),
            # 第三个卷积层,输入通道数为 128,输出通道数为 192,卷积核大小为 3x3,填充为 1
            nn.Conv2d(128, 192, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            # 第四个卷积层,输入通道数为 192,输出通道数为 192,卷积核大小为 3x3,填充为 1
            nn.Conv2d(192, 192, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            # 第五个卷积层,输入通道数为 192,输出通道数为 128,卷积核大小为 3x3,填充为 1
            nn.Conv2d(192, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            # 第三个最大池化层,池化核大小为 3x3,步长为 2
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        # 定义分类器部分的网络结构
        self.classifier = nn.Sequential(
            # 第一个全连接层,输入维度为 128*6*6,输出维度为 2048
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            # Dropout 层,用于防止过拟合
            nn.Dropout(),
            # 第二个全连接层,输入维度为 2048,输出维度为 2048
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            # 第三个全连接层,输入维度为 2048,输出维度为 num_classes(分类的类别数)
            nn.Linear(2048, num_classes),
        )

    def forward(self, x):
        # 前向传播过程,将输入 x 通过特征提取部分
        x = self.features(x)
        # 将特征图展平为一维向量
        x = torch.flatten(x, 1)
        # 将展平后的向量通过分类器部分得到输出
        out = self.classifier(x)
        return out

# 定义测试函数
def test():
    # 创建一个 AlexNet 实例
    net = AlexNet()
    # 生成一个随机输入张量,形状为 (1, 3, 224, 224),表示一个批量大小为 1 的彩色图像,尺寸为 224x224
    y = net(torch.randn(1, 3, 224, 224))
    # 打印输出张量的大小
    print(y.size())
    # 使用 torchinfo 库的 summary 函数打印网络结构和参数信息
    summary(net, (1, 3, 224, 224))

# 如果当前文件作为主程序运行
if __name__ == '__main__':
    # 调用测试函数
    test()

输出:

四、缺点和过时的地方

  • 缺点
  • 计算资源需求大:AlexNet 包含大量的参数,例如中间两个全连接层有很大的 4096 个神经元,这导致计算量庞大,对硬件要求非常高,需要大量的训练数据和计算资源,在训练和部署时成本较高。
  • 过拟合风险:尽管使用了一些方法如 Dropout 来减少过拟合,但在某些情况下仍可能存在过拟合问题。例如在数据量不够丰富或模型复杂度相对数据规模过高时,容易出现对训练数据过度拟合,而对新数据的泛化能力不足。
  • 缺乏对多尺度特征的有效融合:主要依赖固定大小的卷积核和池化操作来提取特征,对于不同尺度的物体,可能不能很好地自适应地提取到最有效的特征,在处理多尺度目标方面的能力相对有限。
  • 过时的地方
  • 网络结构设计:随着技术发展,后续出现了许多更高效、更精巧的网络结构。比如 VGGNet 通过重复使用简单的卷积层堆叠,构建了更深层且性能更优的网络;GoogleNet/Inception 引入了 Inception 模块,通过不同尺寸的卷积和池化层并行处理,提高了计算效率和准确率;ResNet 引入了残差学习框架,解决了深层网络训练困难的问题,能构建极深的网络并取得更好的性能等。相比之下,AlexNet 的结构设计显得相对简单和基础 1。
  • 激活函数:虽然 AlexNet 使用 ReLU 激活函数在当时是一个重要创新,解决了传统激活函数(如 Sigmoid 和 Tanh)在训练时的梯度消失问题,加快了训练速度。但后续又出现了如 Leaky ReLU、PReLU、ELU 等改进的激活函数,它们在某些方面能更好地处理负值或解决神经元 "死亡" 问题,进一步提升了网络的性能和稳定性。
  • 训练方法和优化技术:在训练过程中,AlexNet 使用的随机梯度下降(SGD)及其一些基本的优化策略,在当下看来也较为简单。现在有许多更先进的优化算法,如 Adagrad、Adadelta、RMSProp、Adam 等,它们能够自适应地调整学习率,更好地处理复杂的损失函数曲面,加快收敛速度并提高训练效果。
  • 缺乏对硬件的进一步优化:如今的硬件平台(如 GPU、TPU 等)不断发展,新的神经网络架构设计会更充分地考虑如何与硬件特性相结合,以实现更高效的计算和推理。而 AlexNet 在设计时主要基于当时的硬件条件,没有充分利用后续硬件发展带来的新特性和优势进行针对性优化

参考:

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://blog.csdn.net/weixin_45084253/article/details/124228396

https://www.cnblogs.com/VisionGo/p/17975756

相关推荐
开放知识图谱1 小时前
论文浅尝 | HippoRAG:神经生物学启发的大语言模型的长期记忆(Neurips2024)
人工智能·语言模型·自然语言处理
威化饼的一隅1 小时前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
机器学习之心2 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
MorleyOlsen3 小时前
【Trick】解决服务器cuda报错——RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
运维·服务器·深度学习
愚者大大5 小时前
1. 深度学习介绍
人工智能·深度学习
liuming19925 小时前
Halcon中histo_2dim(Operator)算子原理及应用详解
图像处理·人工智能·深度学习·算法·机器学习·计算机视觉·视觉检测
长风清留扬6 小时前
机器学习中的密度聚类算法:深入解析与应用
人工智能·深度学习·机器学习·支持向量机·回归·聚类
程序员非鱼6 小时前
深度学习任务简介:分类、回归和生成
人工智能·深度学习·分类·回归·生成
γ..6 小时前
基于MATLAB的图像增强
开发语言·深度学习·神经网络·学习·机器学习·matlab·音视频
i查拉图斯特拉如是7 小时前
基于MindSpore NLP的PEFT微调
人工智能·自然语言处理