英伟达发布高效小模型Jet-Nemotron:基于PostNAS与JetBlock架构,准确率与吞吐量双突破

摘要:英伟达最新推出的Jet-Nemotron小模型系列(2B/4B参数)凭借两项关键技术突破------后神经架构搜索(PostNAS)与新型线性注意力模块JetBlock,在多项基准测试中显著超越当前主流开源模型,并在H100 GPU上实现最高53倍的推理吞吐量提升。


一、模型概述

Jet-Nemotron是英伟达全华人团队研发的高效语言模型系列,包含2B和4B两个参数量版本。该模型在数学推理(Math)、代码生成(Code)、常识推理(Commonsense)、信息检索(Retrieval)和长上下文处理(Long Context)等任务中均表现出色,综合性能超越Qwen3、Gemma3、Llama3.2等同类模型。

二、核心创新点

1. 后神经架构搜索(PostNAS)

PostNAS是一种基于预训练模型的架构优化方法,其核心思想是在不重新训练的前提下,对现有Transformer架构进行高效搜索与适配。具体流程包括:

  • 冻结MLP层,仅对注意力模块进行优化;

  • 通过由粗到细的搜索策略,先确定全注意力层的最优位置,再选择线性注意力模块类型;

  • 结合硬件感知搜索,在保持吞吐量的同时提升模型容量与精度。

该方法显著降低了架构探索的成本与风险,并揭示出预训练模型中不同注意力层的重要性分布。

2. JetBlock线性注意力模块

JetBlock是一种融合动态卷积与硬件感知设计的新型线性注意力模块,其特点包括:

  • 在相同训练数据和训练方案下,性能显著优于Mamba2等现有线性注意力设计;

  • 在保持高训练和推理吞吐量的同时,提升模型表达能力;

  • 尤其适合长序列处理场景,显著降低KV缓存开销。

三、性能表现

  1. 准确率提升

    Jet-Nemotron-4B在MMLU-Pro、数学、代码等六大评估维度中接近全面领先,尤其在长上下文任务中表现突出。

  2. 推理效率突破

    • 在H100 GPU上,Jet-Nemotron-2B比Qwen3-1.7B推理速度快21倍,4B版本快47倍;

    • 生成长文本时吞吐量提升最高达53.6倍,解码阶段优势随上下文长度增加而扩大。

  3. 架构优化效果

    PostNAS的应用使模型在参数量增加的同时保持高吞吐量,且准确率不降反升。

四、技术意义与应用前景

Jet-Nemotron的推出标志着英伟达在高效小模型领域的持续深耕。此前发布的Nemotron-Nano-9B已在复杂推理任务中媲美8B模型,而本次2B/4B版本的进一步优化,彰显了其在端侧部署、高并发推理和长文本处理场景下的技术优势。

该方法为后续模型优化提供了新思路:

  • 基于预训练模型的架构搜索可大幅降低开发成本;

  • 硬件感知设计与动态卷积的结合有望成为线性注意力模块的新范式。

五、资源获取


总结:Jet-Nemotron通过PostNAS和JetBlock两项创新,实现了小模型在精度与效率上的双重突破,尤其适合资源受限场景下的高性能推理需求。这一进展为边缘计算和高并发服务提供了新的技术选择。

相关推荐
golang学习记18 小时前
Zed 编辑器的 6 个隐藏技巧:提升开发效率的「冷知识」整理
人工智能
踏浪无痕18 小时前
JobFlow 负载感知调度:把任务分给最闲的机器
后端·架构·开源
武汉大学-王浩宇18 小时前
LLaMa-Factory的继续训练(Resume Training)
人工智能·机器学习
编程点滴18 小时前
高并发与分布式系统中的幂等处理
架构
weisian15118 小时前
入门篇--知名企业-28-字节跳动-2--字节跳动的AI宇宙:从技术赋能到生态共建的深度布局
人工智能·字节跳动·扣子·豆包
NGBQ1213818 小时前
原创餐饮店铺图片数据集:344张高质量店铺图像助力商业空间识别与智能分析的专业数据集
人工智能
FIT2CLOUD飞致云18 小时前
应用升级为智能体,模板中心上线,MaxKB开源企业级智能体平台v2.5.0版本发布
人工智能·ai·开源·1panel·maxkb
haiyu_y18 小时前
Day 58 经典时序模型 2(ARIMA / 季节性 / 残差诊断)
人工智能·深度学习·ar
JZC_xiaozhong19 小时前
主数据同步失效引发的业务风险与集成架构治理
大数据·架构·数据一致性·mdm·主数据管理·数据孤岛解决方案·数据集成与应用集成
peixiuhui19 小时前
突破边界!RK3576边缘计算网关:为工业智能注入“芯”动力
人工智能·物联网·边缘计算·rk3588·iot·rk3568·rk3576