弗洛伊德(Floyd)算法(C/C++)

弗洛伊德算法(Floyd's algorithm) ,又称为弗洛伊德-沃尔什算法(Floyd-Warshall algorithm),是一种用于在加权图中找到所有顶点对之间最短路径的算法 。这个算法适用于有向图和无向图,并且可以处理负权重边,但不能处理负权重循环。

弗洛伊德算法(Floyd-Warshall Algorithm)是一种用于计算图中所有顶点对之间最短路径的动态规划算法。本文将详细介绍弗洛伊德算法的原理,并提供一个C++实现的示例,以帮助读者理解算法的工作原理和编程技巧。

算法原理

弗洛伊德算法的核心思想 是通过逐步寻找并更新所有顶点对之间的最短路径来解决问题。算法使用一个距离矩阵来存储顶点之间的距离,并在每一步中考虑通过一个新的中间顶点来更新这些距离。跟上一篇Dijkstra算法一样的原理,也是通过中转点去更新最短距离。不过Floyd算法处理的是多源的最短路问题


算法步骤

  1. 初始化一个距离矩阵,其中dist[i][j]表示顶点i到顶点j的直接距离。如果ij不直接相连,则dist[i][j]为无穷大。
  2. 对于每个顶点k,作为中间顶点,更新dist[i][j]min(dist[i][j], dist[i][k] + dist[k][j])

Floyd是经典三重for循环,所以它的时间复杂度为o(n^3),n是图中顶点的数量。第一层遍历中转点,第二层遍历起点,第三层遍历终点,对于图中点的数量多的情况,Floyd算法的时间复杂度是很高的。

图解算法:

下面我们将以4个点的图进行讲解,图的连边为有向边和无向边的结合。以邻接矩阵的方式进行存储,如果大家喜欢用邻接表存储,也可以使用邻接表,下面介绍两个矩阵,矩阵A 表示(i,j)i->j的最短距离,初始化为inf。矩阵B表示i->j路径由i到j的中转点,也就是路径上除去起点的第一个点,初始化为-1。

初始:

按照图中的点距离给其赋值,A矩阵i->i距离都为0,inf为无法到达。B矩阵初始为-1。

第一步:

我们选取一个点(按照顺序选取)把它作为中转点,看看以它为中转点,所能到达的点中有没有产生更小的距离,如果产生了,则更新A矩阵的距离,更新B矩阵的中转点。我们先选取1号点,那么位于1号点的行跟列的值都是不可能变化的,还有就是自己到自己的点也是不会变化的永远是0,图中黄颜色标记的是此步不会改变的点,其他的可能会变。在更新距离的时候我们可以不看图就能更新矩阵,例如下图中2号点到3号点本来为10,我们可以连一个矩阵,以1号点画的两条蓝线为两条边,红色线为剩余2边,我们既然把1号点当作中转点,路径必然为2-1-3,此时距离就是副对角线的顶点值相加2+6=8<10,那么通过1号点绕路的方式距离更短。类似的还有3->2号点,6+2=8<inf。3->4号点,10+6=16<inf。4->3号点,10+6=16<inf。顺便把B矩阵更新完。

更新完后(红色标记为变化的值):

第二步:

此时把2号结点作为中转结点,看一看能够更新哪一个最短路径,还是跟上一步一样直接看图更新就可以。如下图,4->1号点,2+4=6<10。1->4号点,2+4=6<10。3->4号点,8+4=12<16。4->3号点,8+4=12<16。对于一些不能更新的值,例如1->3号点,2+8=10>6,这样的则不能更新。

对于B矩阵,要注意3->4跟4->3的路径是相反的,更新是则不能直接修改为2,对于3->4号点第一个中转点还是1号点。更新完后(红色标记为变化的值):

第三步:

把3号点作为中转结点,跟前几步一样,继续寻找最短距离。经过更新我们发现3号点作为中转点不能更新任意一个距离,所以A、B矩阵不需要更新。在图中,经过验证我们发现3号点中转距离反而变大,所以不更新。

第四步:

把4号点作为中转点,继续更新最短距离。我们发现跟3号点一样,不能更新任何距离,在A矩阵中除了黄色的点之外,所能连起来的矩形,主对角线顶点值相加都比当前值要大。在图中也可以验证,所以不给予更新。

这样我们就更新完所有点,把所有点都当作中转点更新完一遍,这样就完成了Floyd算法,更新时每次按照顺序把点当作中转点,遍历寻找路径的起点,再遍历寻找终点,算法时间复杂度为o(n^3)。

视频讲解可以看一下B站这位UP主的讲解,点击直达


算法实现:

以下是弗洛伊德算法的C++实现示例:

cpp 复制代码
#include <iostream>
#include <vector>
#include <limits>
using namespace std;

// 定义图的顶点数
const int N = 100;
// 定义无穷大的初始距离
const int INF = numeric_limits<int>::max();

// 弗洛伊德算法的实现
void floydWarshall(vector<vector<int>>& dist) {
    int n = dist.size();
    // 遍历所有顶点作为中间顶点
    for (int k = 0; k < n; k++) {
        // 遍历所有顶点作为起点
        for (int i = 0; i < n; i++) {
            // 遍历所有顶点作为终点
            for (int j = 0; j < n; j++) {
                // 如果通过顶点k可以找到更短的路径,则更新dist[i][j]
                if (dist[i][k] != INF && dist[k][j] != INF && dist[i][k] + dist[k][j] < dist[i][j]) {
                    dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
    }
}

int main() {
    int n; // 顶点的数量
    cin >> n;

    vector<vector<int>> dist(n, vector<int>(n, INF)); // 初始化距离矩阵

    // 读取邻接矩阵
    for (int i = 0; i < n; i++) {
        dist[i][i] = 0; // 自己到自己的距离是0
        for (int j = i; j < n; j++) {
            int w;
            cin >> w;
            dist[i][j] = w;
            dist[j][i] = w; // 如果是无向图,需要设置对称的权重
        }
    }

    // 执行弗洛伊德算法
    floydWarshall(dist);

    // 打印所有顶点对之间的最短路径
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (dist[i][j] == INF) {
                cout << "INF" << " ";
            } else {
                cout << dist[i][j] << " ";
            }
        }
        cout << endl;
    }

    return 0;
}

Floyd与Dijkstra算法比较

迪杰斯特拉算法(Dijkstra's algorithm)和弗洛伊德算法(Floyd-Warshall algorithm)都是图论中用于计算图中最短路径的著名算法。它们在某些方面有相似之处,但在设计和应用上存在显著差异,下面我们将对这两种算法的相同跟不同进行解释。

相同点:
  1. 目的 :两者都旨在解决最短路径问题。
  2. 适用性:它们都可以用于加权图中的最短路径计算,无论是正权还是负权(只有弗洛伊德算法)。
不同点:
问题范围:
  • 迪杰斯特拉算法:主要用于单元路径的最短路问题,即从单一源点到所有其他顶点的最短路径。
  • 弗洛伊德算法:解决的是所有顶点对之间的最短路径问题,即计算图中每一对顶点之间的最短路径。
时间复杂度:
  • 迪杰斯特拉算法:具有较高的效率,时间复杂度为O(V^2)(使用朴素实现)或O((V+E) log V)(使用优先队列优化)。(V顶点E条边)
  • 弗洛伊德算法:时间复杂度为O(V^3),因为它需要计算所有顶点对的最短路径。
实现方式:
  • 迪杰斯特拉算法:通常使用贪心策略,从一个顶点开始,逐步扩展到邻接顶点,直到找到所有顶点的最短路径。
  • 弗洛伊德算法:使用动态规划,通过三层循环迭代地改进路径长度,直到达到最优解。
对负权边的处理:
  • 迪杰斯特拉算法:不能处理负权边,因为负权边会破坏算法的贪心选择性质。
  • 弗洛伊德算法:可以处理负权边,但图中不能有负权环,否则最短路径问题没有解。
初始化:
  • 迪杰斯特拉算法:从源点到其他所有顶点的距离初始化为无穷大,源点到自身的距离为0。
  • 弗洛伊德算法:所有顶点到自身的距离初始化为0,其他顶点间的距离初始化为边的权重或无穷大(如果无直接连接)。

本篇详解Floyd算法,如果想看Dijkstra算法的话,可以看博主上一篇博客,针对于Dijkstra算法的详解:迪杰斯特拉(Dijkstra)算法(C/C++)-CSDN博客

执笔至此,感触彼多,全文将至,落笔为终,感谢大家的支持。

相关推荐
源代码•宸20 分钟前
Leetcode—322. 零钱兑换【中等】(memset(dp,0x3f, sizeof(dp))
c++·算法·leetcode·职场和发展·dp
机械心20 分钟前
最优化理论与自动驾驶(一):概述
人工智能·算法·自动驾驶
给自己做减法22 分钟前
排序算法快速记忆
java·算法·排序算法
初级代码游戏25 分钟前
国密起步6:GmSSL3使用SM4自定义格式加解密C++版
c++·国密·sm4
许野平27 分钟前
Rust 编译器使用的 C++ 编译器吗?
c++·rust
新知图书32 分钟前
Rust的常量
算法·机器学习·rust
DdddJMs__1351 小时前
C语言 | Leetcode题解之第403题青蛙过河
c语言·数据结构·算法
小林熬夜学编程1 小时前
【Linux系统编程】第二十弹---进程优先级 && 命令行参数 && 环境变量
linux·运维·服务器·c语言·开发语言·算法
向阳逐梦1 小时前
ROS 编程入门的介绍
人工智能·算法·机器学习
六点半8881 小时前
【C/C++】涉及string类的经典OJ编程题
c语言·开发语言·c++·算法