AI学习记录 - 对抗性神经网络

有用点赞哦

学习机器学习到一定程度之后,一般会先看他的损失函数是什么,看他的训练集是什么,训练集是什么,代表我使用模型的时候,输入是什么类型的数据。

对抗神经网络其实可以这样子理解,网上一直说生成器和判别器的概念,没有触及到本质。

我有一种看法:假如当前场景是输入模糊图片,然后输出高质量图片。当判别器和生成器本来就是一个模型,在不把判别器生成器拆开的时候,我输入一张图片,这个模型输出的是0和1,那这个整体模型的作用就是判断这个图片是不是高清图片,训练集是【模糊图片,0】,【高清图片,1】,通过这种方式进行反向传播。但是现在的目的不是判断他是不是高质量图片,而是要他给我生成高质量图片,所以要在中间切开变成两份,前一份模型修改一下输出,让他输出的是一张图片的格式矩阵,后一份模型修改一下输入,让他输入的是一张图片的格式矩阵,就像个协议一样前一半后一半规格一样就可以接起来,你可能会说我不改变他的输入输出本来的规格也一样啊,但是我说了规格变成一张图片,那人不就是看懂了吗,原来中间切开的输出,人看不懂啊,也不符合我要实现输入模糊图片,输出高清图片的目的。

判别器:判别器是单独训练

训练集就是【真实图片, 1】,【虚假图片, 0】,一个批次有2种训练集,大概如下

第一种:【【真实图片, 1】,【真实图片, 1】,【真实图片, 1】,【真实图片, 1】】

第二种:【【虚假图片, 0】,【虚假图片, 0】,【虚假图片, 0】,【虚假图片, 0】】

所以会产生两种损失:

真实图片的损失
python 复制代码
	discriminator.train()
	d_loss1 = discriminator(images, real_targets)
利用生成器生成图片,然后丢到判别器
python 复制代码
	 with torch.no_grad():
	     generated_images = generator(batch_size)
	
	 # Loss with generated image inputs and fake_targets as labels
	 d_loss2 = discriminator(generated_images, fake_targets)
两种损失加起来,然后反向传播
python 复制代码
	d_loss = d_loss1 + d_loss2
	d_optimizer.zero_grad()
	d_loss.backward()
	d_optimizer.step()

生成器:生成器的训练是将 生成器 和 判别器 整合一起训练,我还没完全理解,后续再看看

反向传播的过程,使用损失值对生成器的参数进行反向传播,更新生成器的权重。判别器的权重在这一步保持不变。

单独创建两个优化器,用哪个优化器,就更新哪个模型的权重,这里有两个模型
python 复制代码
# Optimizers
	g_optimizer = torch.optim.Adam(generator.parameters(), lr=g_lr)
	d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=d_lr)
单独更新
python 复制代码
    # Generate images in train mode
    generator.train()
    generated_images = generator(batch_size)

    # Loss with generated image inputs and real_targets as labels
    g_loss = discriminator(generated_images, real_targets)

    # Optimizer updates the generator parameters
    g_optimizer.zero_grad()
    g_loss.backward()
    g_optimizer.step()  # 更新生成器权重
相关推荐
Lethehong8 分钟前
简历优化大师:基于React与AI技术的智能简历优化系统开发实践
前端·人工智能·react.js·kimi k2·蓝耘元生代·蓝耘maas
大千AI助手10 分钟前
Box-Cox变换:机器学习中的正态分布“整形师“
人工智能·机器学习·假设检验·正态分布·大千ai助手·box-cox变换·数据变换
涤生84320 分钟前
图像处理中的投影变换(单应性变换)
图像处理·人工智能·计算机视觉
shayudiandian34 分钟前
YOLOv8目标检测项目实战(从训练到部署)
人工智能·yolo·目标检测
陈天伟教授37 分钟前
基于学习的人工智能(4)机器学习基本框架
人工智能·学习·机器学习
studytosky1 小时前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
做萤石二次开发的哈哈1 小时前
11月27日直播预告 | 萤石智慧台球厅创新场景化方案分享
大数据·人工智能
7***37451 小时前
DeepSeek在文本分类中的多标签学习
学习·分类·数据挖掘
AGI前沿1 小时前
AdamW的继任者?AdamHD让LLM训练提速15%,性能提升4.7%,显存再省30%
人工智能·算法·语言模型·aigc
jiushun_suanli1 小时前
量子纠缠:颠覆认知的宇宙密码
经验分享·学习·量子计算