【提示学习论文】CoCoLe:Conceptual Codebook Learning for Vision-Language Models

Conceptual Codebook Learning for Vision-Language Models(ECCV 2024)

  • CPL的改进
  • 暂无代码

CPL

详见CPL论文

CoCoLe

  • a:手工概念缓存的建立过程
  • b:制作提示的过程,将图像输入Ev,得到image features v 作为查询query,找出相似度top-k2(k2=10)的键keys,与cls一起输入到LLM,生成最优的提示。
  • c:训练推理过程
  • 只有概念代码本中的key和value是可学习的
  • work:多个不同的图像特征分别有着对应的提示,更加细粒度

1 Loss

  • Lce:分类损失,最大化对齐图像特征fv和文本特征ft
  • Lma:最小化top-3 keys和图像特征fv的距离
  • Lcc:正则化,减小过拟合问题
  • Lor:确保文本特征是正交的,增强提示的多样性。对于每个提示,做余弦相似度,使得不同的提示嵌入正交化。

2 可学习的概念码本

  • 视觉概念向量Vi作为keys,D
  • 概念提示Pi作为values,由M个learnable vectors组成,DxM
  • 组成N对,N=100

具体过程

  • 输入图像到image encoder,得到图像特征fvj,计算fvj与所有Vi之间的余弦相似度得分Sc
  • 选择余弦相似度得分最高的top-k3(k3=4)个视觉概念Vi,组成集合Vj
  • 将Vj作为key,获得对应的value概念提示Pi,组成集合Pj
  • 将提示Pj与cls输入text encoder,得到文本特征ftj
  • 计算概率

疑问:

Vi的初始化是什么?Pi的初始化是什么?

3 手工概念缓存

  • CPL:选择top-1作为key
  • 区别:选择top-k1(k1=3)个图像特征,并计算它们的平均值作为key
  • 然后存储手工概念缓存

4 正则化的概念码本学习

确保可学习文本特征与手工概念提示差异不大

  • fhtd:手工制作的概念提示文本特征
  • fltd:可学习的提示文本特征

进行欧几里得距离约束:

5 推断

输出的文本特征,与图像特征进行相似度计算。

相关推荐
StarPrayers.5 分钟前
Binary Classification& sigmoid 函数的逻辑回归&Decision Boundary
人工智能·分类·数据挖掘
渡我白衣9 分钟前
C++:链接的两难 —— ODR中的强与弱符号机制
开发语言·c++·人工智能·深度学习·网络协议·算法·机器学习
大模型真好玩11 分钟前
LangChain1.0速通指南(一)——LangChain1.0核心升级
人工智能·agent·mcp
私人珍藏库14 分钟前
Parallels Desktop 26.1.1 for Mac 秋叶QiuChenly中文解锁直装版,最好用的macOS虚拟机
人工智能
程序员大雄学编程30 分钟前
用Python来学微积分23-微分中值定理
人工智能·python·数学·微积分
GMICLOUD32 分钟前
网易科技专访 GMI Cloud 创始人&CEO Alex Yeh:以“产品+布局+服务”构建全球竞争力
人工智能·科技·ai·gpu算力·agi·ai应用·ai基础设施
im_AMBER33 分钟前
Leetcode 43
笔记·学习·算法·leetcode
wwlsm_zql37 分钟前
石头科技专利创新:清洁机器人维护简化,效率升级
人工智能·科技·microsoft·机器人
luoganttcc40 分钟前
加快高水平科技自立自强,引领发展新质生产力 <十五五 规划节选>
大数据·人工智能·科技
夕阳染色的坡道1 小时前
LineSlam线特征投影融合(Fuse) 中pML->GetLineNormalVector()的理解代码理解
人工智能·opencv·计算机视觉