【提示学习论文】CoCoLe:Conceptual Codebook Learning for Vision-Language Models

Conceptual Codebook Learning for Vision-Language Models(ECCV 2024)

  • CPL的改进
  • 暂无代码

CPL

详见CPL论文

CoCoLe

  • a:手工概念缓存的建立过程
  • b:制作提示的过程,将图像输入Ev,得到image features v 作为查询query,找出相似度top-k2(k2=10)的键keys,与cls一起输入到LLM,生成最优的提示。
  • c:训练推理过程
  • 只有概念代码本中的key和value是可学习的
  • work:多个不同的图像特征分别有着对应的提示,更加细粒度

1 Loss

  • Lce:分类损失,最大化对齐图像特征fv和文本特征ft
  • Lma:最小化top-3 keys和图像特征fv的距离
  • Lcc:正则化,减小过拟合问题
  • Lor:确保文本特征是正交的,增强提示的多样性。对于每个提示,做余弦相似度,使得不同的提示嵌入正交化。

2 可学习的概念码本

  • 视觉概念向量Vi作为keys,D
  • 概念提示Pi作为values,由M个learnable vectors组成,DxM
  • 组成N对,N=100

具体过程

  • 输入图像到image encoder,得到图像特征fvj,计算fvj与所有Vi之间的余弦相似度得分Sc
  • 选择余弦相似度得分最高的top-k3(k3=4)个视觉概念Vi,组成集合Vj
  • 将Vj作为key,获得对应的value概念提示Pi,组成集合Pj
  • 将提示Pj与cls输入text encoder,得到文本特征ftj
  • 计算概率

疑问:

Vi的初始化是什么?Pi的初始化是什么?

3 手工概念缓存

  • CPL:选择top-1作为key
  • 区别:选择top-k1(k1=3)个图像特征,并计算它们的平均值作为key
  • 然后存储手工概念缓存

4 正则化的概念码本学习

确保可学习文本特征与手工概念提示差异不大

  • fhtd:手工制作的概念提示文本特征
  • fltd:可学习的提示文本特征

进行欧几里得距离约束:

5 推断

输出的文本特征,与图像特征进行相似度计算。

相关推荐
AndrewHZ24 分钟前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊31 分钟前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
焄塰1 小时前
Ansible 管理变量和事实
学习·centos·ansible
Code_流苏1 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉1 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01071 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
nonono2 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络
oe10192 小时前
读From GPT-2 to gpt-oss: Analyzing the Architectural Advances(续)
笔记·gpt·学习