ColdDTA复现过程

主要就是对coldDTA论文的复现过程

文章目录


前言

从我实现代码复现的经验来看,一般来说不用按照顺序一个一个安装readme上给的库,先把基础的pytorch和geometric包安装成功之后(版本要一致)

直接跑数据处理的代码报什么错就对应的安装相应 的包

一、复现步骤

python 复制代码
conda create --name coldDTA python=3.8
//先安装pytorch 
 
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
//再安装geometric库,首先在这个网址上找到对应的安装包
//https://data.pyg.org/whl/

pip install torch_cluster-1.5.9-cp38-cp38-linux_x86_64.whl

pip install torch_scatter-2.0.7-cp38-cp38-linux_x86_64.whl

pip install torch_sparse-0.6.10-cp38-cp38-linux_x86_64.whl

pip install torch_spline_conv-1.2.1-cp38-cp38-linux_x86_64.whl

pip install torch-geometric==2.0.3

//紧接着安装,与作者给的版本一致
pip install matplotlib==3.3.4
pip instal rdkit==2023.3.2

二、使用步骤

1.引入库

代码如下(示例):

c 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context

2.读入数据

代码如下(示例):

c 复制代码
data = pd.read_csv(
    'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())

该处使用的url网络请求的数据。


总结

提示:这里对文章进行总结:

例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

相关推荐
余炜yw1 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐1 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
96771 小时前
对抗样本存在的原因
深度学习
YRr YRr2 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
静静的喝酒2 小时前
深度学习笔记之BERT(二)BERT精简变体:ALBERT
深度学习·bert·albert
麦麦大数据2 小时前
Python棉花病虫害图谱系统CNN识别+AI问答知识neo4j vue+flask深度学习神经网络可视化
人工智能·python·深度学习
谢眠3 小时前
深度学习day3-自动微分
python·深度学习·机器学习
z千鑫3 小时前
【人工智能】深入理解PyTorch:从0开始完整教程!全文注解
人工智能·pytorch·python·gpt·深度学习·ai编程
YRr YRr4 小时前
深度学习:神经网络的搭建
人工智能·深度学习·神经网络
爱喝热水的呀哈喽4 小时前
torch张量与函数表达式写法
人工智能·pytorch·深度学习