ColdDTA复现过程

主要就是对coldDTA论文的复现过程

文章目录


前言

从我实现代码复现的经验来看,一般来说不用按照顺序一个一个安装readme上给的库,先把基础的pytorch和geometric包安装成功之后(版本要一致)

直接跑数据处理的代码报什么错就对应的安装相应 的包

一、复现步骤

python 复制代码
conda create --name coldDTA python=3.8
//先安装pytorch 
 
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
//再安装geometric库,首先在这个网址上找到对应的安装包
//https://data.pyg.org/whl/

pip install torch_cluster-1.5.9-cp38-cp38-linux_x86_64.whl

pip install torch_scatter-2.0.7-cp38-cp38-linux_x86_64.whl

pip install torch_sparse-0.6.10-cp38-cp38-linux_x86_64.whl

pip install torch_spline_conv-1.2.1-cp38-cp38-linux_x86_64.whl

pip install torch-geometric==2.0.3

//紧接着安装,与作者给的版本一致
pip install matplotlib==3.3.4
pip instal rdkit==2023.3.2

二、使用步骤

1.引入库

代码如下(示例):

c 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context

2.读入数据

代码如下(示例):

c 复制代码
data = pd.read_csv(
    'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())

该处使用的url网络请求的数据。


总结

提示:这里对文章进行总结:

例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

相关推荐
殇者知忧1 小时前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
红衣小蛇妖4 小时前
神经网络-Day45
人工智能·深度学习·神经网络
JoannaJuanCV5 小时前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
Best_Me077 小时前
深度学习模块缝合
人工智能·深度学习
狂小虎9 小时前
亲测解决self.transform is not exist
python·深度学习
Fxrain9 小时前
[深度学习]搭建开发平台及Tensor基础
人工智能·深度学习
一叶知秋秋11 小时前
python学习day39
人工智能·深度学习·学习
weixin_4487816211 小时前
DenseNet算法 实现乳腺癌识别
pytorch·深度学习·神经网络
zzc92112 小时前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
编程有点难12 小时前
Python训练打卡Day43
开发语言·python·深度学习