OpenCV小练习:身份证号码识别

**目标:**针对一张身份证照片,把身份证号码识别出来(转成数字或字符串)。

实现思路: 需要将目标拆分成两个子任务:(1) 把身份证号码区域从整张图片中检测/裁剪出来;(2) 将图片中的数字转化成文字。第一个子任务用OpenCV(如何自行编译OpenCV源码?),第二个子任务主要仰仗Tesseract(注: Tesseract是著名的OCR文字识别开源项目)。

使用OpenCV做图像处理的大致过程为:首先要将彩色图像转成灰度图,再进一步做二值化转换。为了把身份证号码区域整个圈出来,需要继续对图像进行"膨胀"处理,使得每个数字的小区域都与相邻数字的小区域连接起来,连成一个大区域。这样处理之后,在用cv::findContours查找轮廓时,就可以根据身份证号码区域的面积和宽高比把它挑选出来了。

具体代码实现

首先用OpenCV加载图片文件:

cpp 复制代码
Mat srcImage = imread(".\\assets\\pigidcard.png");

接着对图像进行灰度化和二值化处理:

cpp 复制代码
Mat grayImg;
cv::cvtColor(srcImage, grayImg, COLOR_BGR2GRAY);
Mat binary;
cv::threshold(grayImg, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);

到这一步,图像看起来是这样的:

接着要做"膨胀"处理。这一步非常关键!需要调整下面这个Size类型的内核大小,目标是让身份证号码的这些数字前后相连,形成一个整体的矩形区域。

cpp 复制代码
Mat kernel = cv::getStructuringElement(MORPH_RECT, Size(26, 26));
Mat dilation;
cv::dilate(binary, dilation, kernel);

到这一步,图像看起来是这样的:

实际的轮廓/区域分布是这样的:

然后就是遍历图像中的所有轮廓。我们设定两个条件,当轮廓的面积以及轮廓外边框的宽高比都大于某个值(根据实际情况而定),我们就认为当前这个轮廓就是身份证号码区域,可以把它裁剪出来。

cpp 复制代码
std::vector<std::vector<Point>> contours;
std::vector<Vec4i> hierarchy;
cv::findContours(dilation, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

for (size_t i = 0; i < contours.size(); i++) {
    double area = cv::contourArea(contours[i]);
    Rect roi = cv::boundingRect(contours[i]);

    double aspectRatio = (double)roi.width / roi.height;
    // 根据实际情况调整这两个阈值
    if (area > 40000 && aspectRatio > 10) {
        Mat cropped = binary(roi);
        imshow("ID Card - number only", cropped);

        // 继续使用 Tesseract OCR
        // ...

        break;
    }
}

上面代码运行的结果:cropped对象是裁剪出来的仅含一串身份证号码的小图片。注意这是一个二值图,而且不是膨胀处理后的图像哦!接着轮到Tesseract登场了,把这个图片中的数字转成字符串。(注: 请参考这篇文章自行把Tesseract源代码编译成静态库。)

cpp 复制代码
#include "baseapi.h"
#include "allheaders.h"

#pragma comment(lib, "leptonica-1.84.1.lib")
#pragma comment(lib, "tesseract54.lib")

// 使用 Tesseract OCR
tesseract::TessBaseAPI tess;
if (tess.Init("tessdata", "eng") == 0) {
    tess.SetPageSegMode(tesseract::PSM_SINGLE_BLOCK);

    // Tesseract无法识别二值图!转换回RGB图像
    Mat ocrImg;
    cv::cvtColor(cropped, ocrImg, COLOR_GRAY2BGR);
    int bytesPerPixel = GetBytesPerPixel(ocrImg);
    tess.SetImage((uchar*)ocrImg.data, ocrImg.cols, ocrImg.rows, bytesPerPixel, ocrImg.cols * bytesPerPixel);

    char* outText = tess.GetUTF8Text();
    std::cout << "ID numbers: " << outText << std::endl;
    delete[] outText;
    tess.End();
}

打完收工!o(* ̄▽ ̄*)ブ

P.S. 完整的代码可以从这里下载:https://github.com/luqiming666/OpenCVMisc。查看OpenCVMiscDlg.cpp 文件中的_DetectIDCard_WithGoodDilation() 函数实现即可。我也上传了Tesseract库文件,但只有Release版。如果要验证OCR效果,需要把OpenCVMisc项目的配置切换到Release + x64,并且在OpenCVMiscDlg.cpp文件头部放开这个宏定义:#define ENABLE_TESSERACT

相关推荐
愿你天黑有灯下雨有伞18 分钟前
告别复杂配置!Spring Boot优雅集成百度OCR的终极方案
spring boot·百度·ocr
xw337340956411 小时前
彩色转灰度的核心逻辑:三种经典方法及原理对比
人工智能·python·深度学习·opencv·计算机视觉
蓝桉80211 小时前
opencv学习(图像金字塔)
人工智能·opencv·学习
牵牛老人13 小时前
OpenCV学习探秘之二 :数字图像的矩阵原理,OpenCV图像类与常用函数接口说明,及其常见操作核心技术详解
opencv·学习·矩阵
Gession-杰14 小时前
OpenCV图像梯度、边缘检测、轮廓绘制、凸包检测大合集
人工智能·opencv·计算机视觉
水军总督16 小时前
OpenCV+Python
python·opencv·计算机视觉
欧阳小猜16 小时前
OpenCV-图像预处理➁【图像插值方法、边缘填充策略、图像矫正、掩膜应用、水印添加,图像的噪点消除】
人工智能·opencv·计算机视觉
旭日东升的xu.17 小时前
OpenCV(04)梯度处理,边缘检测,绘制轮廓,凸包特征检测,轮廓特征查找
人工智能·opencv·计算机视觉
蓝桉80220 小时前
opencv学习(图像梯度)
人工智能·opencv·学习
胡耀超21 小时前
基于Docker的GPU版本飞桨PaddleOCR部署深度指南(国内镜像)2025年7月底测试好用:从理论到实践的完整技术方案
运维·python·docker·容器·ocr·paddlepaddle·gpu