离线OCR笔记及代码

1、下载Tesseract

Tesseract-OCR下载和安装,Python-OCR使用_tesseract-ocr python 下载-CSDN博客

在文文件里面有

2、PATH路径的添加,环境变量

这里有两个环境变量,其中一个是data后缀的
这个是你安装的文件路径

py 复制代码
pip install Pillow
pip install pytesseract

3、安装的时候,需要勾选相关的Chinese语言包

4、代码如下

py 复制代码
import cv2
import pytesseract
import os
import time
import re
from PIL import Image, ImageDraw, ImageFont
import numpy as np


# 设置 pytesseract 可执行文件的路径(根据实际情况修改)
pytesseract.pytesseract.tesseract_cmd = r'C:\Users\47887\AppData\Local\Tesseract-OCR\tesseract.exe'

# 设置 TESSDATA_PREFIX 环境变量
os.environ['TESSDATA_PREFIX'] = r'C:\Users\47887\AppData\Local\Tesseract-OCR\tessdata'
myobject = ['微积分']


def preprocess_image(image):
    # 灰度化
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 高斯模糊降噪
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
    # 自适应阈值处理
    thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
    return thresh


if __name__ == "__main__":
    # 视频输入配置
    cap = cv2.VideoCapture(1)
    model_w, model_h = 640, 640  # 必须与训练时的图像尺寸一致

    while True:
        success, img0 = cap.read()
        if success:
            t1 = time.time()
            # 图像预处理
            preprocessed_img = preprocess_image(img0)
            # 进行文字识别并获取文字及坐标信息,同时获取置信度
            data = pytesseract.image_to_data(preprocessed_img, lang='chi_sim', output_type=pytesseract.Output.DICT)
            t2 = time.time()

            fps = 1 / (t2 - t1)

            # 将 OpenCV 图像转换为 PIL 图像
            pil_image = Image.fromarray(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB))
            draw = ImageDraw.Draw(pil_image)
            # 加载中文字体文件,你可以根据实际情况修改字体文件路径
            font = ImageFont.truetype("simhei.ttf", 18)
            draw.text((10, 30), f'FPS: {fps:.2f}', font=font, fill=(0, 255, 0))

            for i in range(len(data['text'])):
                text = data['text'][i].strip()
                conf = data['conf'][i] if isinstance(data['conf'][i], int) else 0
                if text:
                    for obj in myobject:
                        if re.search(obj, text):
                            x = data['left'][i]
                            y = data['top'][i]
                            w = data['width'][i]
                            h = data['height'][i]
                            # 在图像上绘制矩形框
                            draw.rectangle((x, y, x + w, y + h), outline=(255, 0, 0), width=2)
                            # 显示匹配到的文字、坐标和置信度
                            info_text = f"{text} ({x}, {y}) 置信度: {conf:.2f}%"
                            draw.text((x, y - 20), info_text, font=font, fill=(0, 255, 0))
                            print(f"匹配文字: {text}, 坐标: 左上角({x}, {y}), 右下角({x + w}, {y + h}), 置信度: {conf:.2f}%")

            # 将 PIL 图像转换回 OpenCV 图像
            img0 = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)

            cv2.imshow("Detection", img0)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

5、效果如下

相关推荐
wdfk_prog15 小时前
[Linux]学习笔记系列 -- [drivers][input]input
linux·笔记·学习
ouliten15 小时前
cuda编程笔记(36)-- 应用Tensor Core加速矩阵乘法
笔记·cuda
孞㐑¥16 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
mango_mangojuice17 小时前
Linux学习笔记(make/Makefile)1.23
java·linux·前端·笔记·学习
工程师老罗17 小时前
YOLOv1 核心知识点笔记
笔记·yolo
半壶清水19 小时前
[软考网规考点笔记]-软件开发、项目管理与知识产权核心知识与真题解析
网络·笔记·压力测试
tq108619 小时前
先探索,后设计
笔记
hnult19 小时前
2026 在线培训考试系统选型指南:核心功能拆解与选型逻辑
人工智能·笔记·课程设计
AI视觉网奇19 小时前
ue 角色驱动衣服 绑定衣服
笔记·学习·ue5
三水不滴20 小时前
计网ping原理
经验分享·笔记·计算机网络