离线OCR笔记及代码

1、下载Tesseract

Tesseract-OCR下载和安装,Python-OCR使用_tesseract-ocr python 下载-CSDN博客

在文文件里面有

2、PATH路径的添加,环境变量

这里有两个环境变量,其中一个是data后缀的
这个是你安装的文件路径

py 复制代码
pip install Pillow
pip install pytesseract

3、安装的时候,需要勾选相关的Chinese语言包

4、代码如下

py 复制代码
import cv2
import pytesseract
import os
import time
import re
from PIL import Image, ImageDraw, ImageFont
import numpy as np


# 设置 pytesseract 可执行文件的路径(根据实际情况修改)
pytesseract.pytesseract.tesseract_cmd = r'C:\Users\47887\AppData\Local\Tesseract-OCR\tesseract.exe'

# 设置 TESSDATA_PREFIX 环境变量
os.environ['TESSDATA_PREFIX'] = r'C:\Users\47887\AppData\Local\Tesseract-OCR\tessdata'
myobject = ['微积分']


def preprocess_image(image):
    # 灰度化
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 高斯模糊降噪
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
    # 自适应阈值处理
    thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
    return thresh


if __name__ == "__main__":
    # 视频输入配置
    cap = cv2.VideoCapture(1)
    model_w, model_h = 640, 640  # 必须与训练时的图像尺寸一致

    while True:
        success, img0 = cap.read()
        if success:
            t1 = time.time()
            # 图像预处理
            preprocessed_img = preprocess_image(img0)
            # 进行文字识别并获取文字及坐标信息,同时获取置信度
            data = pytesseract.image_to_data(preprocessed_img, lang='chi_sim', output_type=pytesseract.Output.DICT)
            t2 = time.time()

            fps = 1 / (t2 - t1)

            # 将 OpenCV 图像转换为 PIL 图像
            pil_image = Image.fromarray(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB))
            draw = ImageDraw.Draw(pil_image)
            # 加载中文字体文件,你可以根据实际情况修改字体文件路径
            font = ImageFont.truetype("simhei.ttf", 18)
            draw.text((10, 30), f'FPS: {fps:.2f}', font=font, fill=(0, 255, 0))

            for i in range(len(data['text'])):
                text = data['text'][i].strip()
                conf = data['conf'][i] if isinstance(data['conf'][i], int) else 0
                if text:
                    for obj in myobject:
                        if re.search(obj, text):
                            x = data['left'][i]
                            y = data['top'][i]
                            w = data['width'][i]
                            h = data['height'][i]
                            # 在图像上绘制矩形框
                            draw.rectangle((x, y, x + w, y + h), outline=(255, 0, 0), width=2)
                            # 显示匹配到的文字、坐标和置信度
                            info_text = f"{text} ({x}, {y}) 置信度: {conf:.2f}%"
                            draw.text((x, y - 20), info_text, font=font, fill=(0, 255, 0))
                            print(f"匹配文字: {text}, 坐标: 左上角({x}, {y}), 右下角({x + w}, {y + h}), 置信度: {conf:.2f}%")

            # 将 PIL 图像转换回 OpenCV 图像
            img0 = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)

            cv2.imshow("Detection", img0)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

5、效果如下

相关推荐
浅念-5 分钟前
C++入门(2)
开发语言·c++·经验分享·笔记·学习
张人玉1 小时前
VisionPro 定位与卡尺测量学习笔记
笔记·学习·计算机视觉·vsionprp
songyuc1 小时前
【BiFormer】BiFormer: Vision Transformer with Bi-Level Routing Attention 译读笔记
笔记·transformer
觉醒大王2 小时前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
三水不滴2 小时前
计网:输入网址到网页显示
经验分享·笔记·计算机网络
小白狮ww2 小时前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
JustDI-CM3 小时前
AI学习笔记-提示词工程
人工智能·笔记·学习
爱写bug的野原新之助3 小时前
加密摘要算法MD5、SHA、HMAC:学习笔记
笔记·学习
小乔的编程内容分享站4 小时前
C语言笔记之函数
c语言·笔记
四谎真好看5 小时前
JavaWeb学习笔记(Day13)
笔记·学习·学习笔记·javaweb