FLUX 1 将像 Stable Diffusion 一样完整支持ControlNet组件

之前 InstantX 团队做的多合一的 Flux ControlNet 现在开始和 ShakkerAI 合作并推出了:Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro

该模型支持 7 种控制模式,包括 canny (0), tile (1), depth (2), blur (3), pose (4), gray (5) 和 low quality (6),并且还能和其他 ControlNet 一起使用。

模型卡片

  • 该 checkpoint 是 FLUX.1-dev-Controlnet-Union 的专业版,经过更多步骤和数据集的训练。
  • 该模型支持 7 种控制模式,包括 canny (0)、tile (1)、depth (2)、blur (3)、pose (4)、gray (5)、low quality (6)。
  • 建议 controlnet_conditioning_scale 为 0.3-0.8。
  • 该模型可与其他 ControlNets 共同使用。

效果



Multi-Controls 推理

python 复制代码
import torch
from diffusers.utils import load_image

from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel

base_model = 'black-forest-labs/FLUX.1-dev'
controlnet_model_union = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro'

controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union, torch_dtype=torch.bfloat16)
controlnet = FluxMultiControlNetModel([controlnet_union]) # we always recommend loading via FluxMultiControlNetModel

pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
pipe.to("cuda")

prompt = 'A bohemian-style female travel blogger with sun-kissed skin and messy beach waves.'
control_image_depth = load_image("https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro/resolve/main/assets/depth.jpg")
control_mode_depth = 2

control_image_canny = load_image("https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro/resolve/main/assets/canny.jpg")
control_mode_canny = 0

width, height = control_image.size

image = pipe(
    prompt, 
    control_image=[control_image_depth, control_image_canny],
    control_mode=[control_mode_depth, control_mode_canny],
    width=width,
    height=height,
    controlnet_conditioning_scale=[0.2, 0.4],
    num_inference_steps=24, 
    guidance_scale=3.5,
    generator=torch.manual_seed(42),
).images[0]

我们还支持像以前一样加载多个控制网。

python 复制代码
from diffusers import FluxControlNetModel, FluxMultiControlNetModel

controlnet_model_union = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro'
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union, torch_dtype=torch.bfloat16)

controlnet_model_depth = 'Shakker-Labs/FLUX.1-dev-Controlnet-Depth'
controlnet_depth = FluxControlNetModel.from_pretrained(controlnet_model_depth, torch_dtype=torch.bfloat16)

controlnet = FluxMultiControlNetModel([controlnet_union, controlnet_depth])

# set mode to None for other ControlNets
control_mode=[2, None]

资料

  • InstantX/FLUX.1-dev-Controlnet-Canny
  • Shakker-Labs/FLUX.1-dev-ControlNet-Depth
  • Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro
相关推荐
刘孬孬沉迷学习19 小时前
AI+通信+多模态应用分类与核心内容总结
人工智能·机器学习·分类·数据挖掘·信息与通信
Allenlzcoder19 小时前
掌握机器学习算法及其关键超参数
人工智能·机器学习·超参数
LaughingZhu19 小时前
Product Hunt 每日热榜 | 2025-10-26
人工智能·经验分享·搜索引擎·产品运营
2401_8414956419 小时前
【自然语言处理】Transformer模型
人工智能·python·深度学习·算法·语言模型·自然语言处理·transformer
KG_LLM图谱增强大模型19 小时前
[ICAIS2025]探索LLM驱动的知识图谱构建:技术机制、方法对比与未来方向
人工智能·知识图谱·graphrag·知识图谱增强大模型
CH_Qing19 小时前
【ROS2】驱动开发-雷达篇
人工智能·ros2·1024程序员节
孤廖19 小时前
面试官问 Linux 编译调试?gcc 编译流程 + gdb 断点调试 + git 版本控制,连 Makefile 都标好了
linux·服务器·c++·人工智能·git·算法·github
星期天要睡觉20 小时前
什么是提示词(Prompt),提示词类型、结构解析
人工智能·语言模型
深度学习lover20 小时前
<数据集>yolo煤矿安全帽识别数据集<目标检测>
人工智能·python·深度学习·yolo·目标检测·计算机视觉·煤矿安全帽识别
前端双越老师20 小时前
建议应届毕业生不要再做前端开发了
人工智能·面试·ai编程