python 图像去噪

使用python对图像进行去噪,较为简单,为追求更好的效果,可能还需要上模型。

效果对比

假设我关心安全帽部位,可以看到右侧去噪之后,安全帽轮廓更加干净。

我的模型是用较为清晰的图像训练的。在我的模型上,左侧这种较为模糊的图片图片会发生误识别(即将图中人员识别为未戴安全帽),右侧会识别为"带了安全帽"。

代码

python 复制代码
import cv2
import os
from PIL import Image
import numpy as np

def denoise_image(image_path, output_path):
    # 使用 OpenCV 读取图像
    img = cv2.imread(image_path)
    
    if img is None:
        print(f"Error loading image {image_path}")
        return

    # 去噪处理
    # 适用于彩色图像的去噪
    denoised_img = cv2.fastNlMeansDenoisingColored(img, None, 4, 4, 7, 21)
    
    # 将处理后的图像转换为 PIL 格式并保存
    denoised_pil_img = Image.fromarray(cv2.cvtColor(denoised_img, cv2.COLOR_BGR2RGB))
    denoised_pil_img.save(output_path)
    print(f"Saved denoised image to {output_path}")

def process_images_in_folder(folder_path, output_folder):
    # 确保输出文件夹存在
    os.makedirs(output_folder, exist_ok=True)
    
    # 遍历文件夹中的所有图像文件
    for file_name in os.listdir(folder_path):
        if file_name.lower().endswith(('.png', '.jpg', '.jpeg')):
            input_path = os.path.join(folder_path, file_name)
            base_name = os.path.splitext(file_name)[0]
            output_file_name = f"{base_name}_denoise_img{os.path.splitext(file_name)[1]}"
            output_path = os.path.join(output_folder, output_file_name)
            denoise_image(input_path, output_path)

# 替换以下路径
input_folder_path = r'E:\noise'
output_folder_path = r'E:\denoise'


# 执行处理
process_images_in_folder(input_folder_path, output_folder_path)
相关推荐
汤姆yu22 分钟前
基于python的化妆品销售分析系统
开发语言·python·化妆品销售分析
ScilogyHunter29 分钟前
C语言标准库完全指南
c语言·开发语言
sali-tec30 分钟前
C# 基于halcon的视觉工作流-章52-生成标定板
开发语言·图像处理·人工智能·算法·计算机视觉
应茶茶33 分钟前
C++11 核心新特性:从语法重构到工程化实践
java·开发语言·c++
上去我就QWER1 小时前
Python下常用开源库
python·1024程序员节
程子的小段1 小时前
C 语言实例 - 字符串复制
c语言·开发语言
-森屿安年-1 小时前
STL 容器:stack
开发语言·c++
歪歪1001 小时前
C#如何在数据可视化工具中进行数据筛选?
开发语言·前端·信息可视化·前端框架·c#·visual studio
程序员杰哥2 小时前
Pytest之收集用例规则与运行指定用例
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·pytest
Jyywww1212 小时前
Python基于实战练习的知识点回顾
开发语言·python