五种多目标优化算法(NSGA3、MOPSO、MOGWO、NGSA2、SPEA2)性能对比,包含47个多目标测试函数,6种评价指标,MATLAB代码

一、五种多目标算法及六种评价指标简介

  1. 多目标灰狼优化算法(MOGWO)

    MOGWO是由Mirjalili等人在2016年提出的,基于灰狼优化算法(GWO)的多目标版本。它引入了存档机制和改进的头狼选择方式,以处理多目标问题中的Pareto最优解。MOGWO通过在优化过程中存储和检索最合适的非支配解,并采用轮盘赌的方式从存档中选择头狼,以保持种群多样性并提高算法性能 。

  2. 多目标粒子群优化(MOPSO)

    MOPSO是一种基于粒子群优化(PSO)的多目标优化算法。它通过引入领导粒子的选择机制和粒子的多样性保持策略来解决多目标问题。MOPSO能够同时逼近Pareto最优前沿,并保持了解的多样性 。

  3. 非支配排序遗传算法II(NSGA-II)

    NSGA-II由Deb等人在1992年提出,是一种经典的多目标优化算法。它使用非支配排序和拥挤度计算来维持种群多样性。NSGA-II在处理最多三个目标的问题时表现良好,但对于高维多目标问题,其性能可能会下降 。

  4. SPEA2

    SPEA2(Strength Pareto Evolutionary Algorithm 2)是SPEA的改进版本,它在保持Pareto解的同时,引入了适应度共享和档案策略来提高种群多样性。SPEA2通过考虑个体间的相似性来避免种群早熟收敛 。

  5. NSGA-III

    NSGA-III是Deb在2013年提出的,用于解决高维多目标优化问题。它采用参考点基于的非支配排序方法,并引入了种群的自适应标准化和关联操作,以提高算法在高维问题上的性能和多样性 。

在多目标优化中,评价指标用于衡量算法性能,特别是它们在逼近Pareto最优前沿和保持解的多样性方面的表现。以下是一些常用的多目标评价指标的介绍:

  1. Inverse Generational Distance (IGD)

    IGD是一种衡量算法生成的非支配解集与真实Pareto前沿之间距离的指标。它计算了每个真实Pareto前沿的点到最近非支配解的距离的总和,并取平均值。IGD值越小,表示算法生成的解集与真实Pareto前沿越接近。

  2. Generational Distance (GD)

    GD是IGD的一个变体,它计算了每个非支配解到真实Pareto前沿最近点的距离的总和,并取平均值。GD值越小,表示算法生成的解集在Pareto前沿上分布得越好。

  3. Hypervolume (HV)

    HV指标衡量的是算法生成的非支配解集所覆盖的区域大小。通常,这个区域是在目标函数的最小值和最大值之间定义的。HV值越大,表示算法生成的解集在目标函数空间中覆盖的范围越广。

  4. Coverage

    Coverage指标衡量一个算法生成的Pareto前沿覆盖另一个算法生成的Pareto前沿的比例。如果算法A的Coverage指标高于算法B,那么意味着算法A生成的Pareto前沿在某种程度上包含了算法B生成的Pareto前沿。

  5. Spread

    Spread指标衡量算法生成的非支配解集在Pareto前沿上的分散程度。高的Spread值意味着解集在前沿上分布得更均匀,没有聚集在某个区域。

  6. Spacing

    Spacing是衡量算法生成的非支配解集中各个解之间平均距离的指标。Spacing值越小,表示解集内部的解越密集,多样性越高。

IGD和GD可以评估算法的逼近能力,而HV、Spread和Spacing可以评估算法的多样性保持能力。Coverage则可以用来比较不同算法生成的Pareto前沿的覆盖范围。

二、部分MATLAB代码

五种多目标算法(NSGA3、MOPSO、MOGWO、NGSA2、SPEA2)在46个多目标测试函数(ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、DTLZ1-DTLZ7、WFG1-WFG10、UF1-UF10、CF1-CF10、Kursawe、Poloni、Viennet2、Viennet3)以及1个工程应用(盘式制动器设计)上实验,并采IGD、GD、HV、Coverage、Spread、Spacing六种评价指标进行评价。

bash 复制代码
close all;
clear ;
clc;
addpath('./metric/')%添加算法路径
%%
% TestProblem测试问题说明:
%一共46个多目标测试函数,详情如下:
%1-5:ZDT1、ZDT2、ZDT3、ZDT4、ZDT6
%6-12:DZDT1-DZDT7
%13-22:wfg1-wfg10
%23-32:uf1-uf10
%33-42:cf1-cf10
%43-46:Kursawe、Poloni、Viennet2、Viennet3
%47 盘式制动器设计 温泽宇,谢珺,谢刚,续欣莹.基于新型拥挤度距离的多目标麻雀搜索算法[J].计算机工程与应用,2021,57(22):102-109.
%%
TestProblem=36;%测试函数1-47
MultiObj = GetFunInfo(TestProblem);
MultiObjFnc=MultiObj.name;%问题名
% Parameters
params.Np = 100;        % Population size 种群大小
params.Nr = 100;        % Repository size 外部存档
params.maxgen=50;    % Maximum number of generations 最大迭代次数
numOfObj=MultiObj.numOfObj;%目标函数个数
%% 算法求解,分别得到paretoPOS和paretoPOF

三、部分结果

(1)Viennet3

(2)ZDT3

(3)盘式制动器设计

四、完整MATLAB代码

见下方名片

相关推荐
不懂机器人8 分钟前
linux网络编程-----TCP服务端并发模型(epoll)
linux·网络·tcp/ip·算法
jayzhang_22 分钟前
SPARK入门
大数据·开发语言
蹦极的考拉22 分钟前
网站日志里面老是出现{pboot:if((\x22file_put_co\x22.\x22ntents\x22)(\x22temp.php\x22.....
android·开发语言·php
fured31 分钟前
[调试][实现][原理]用Golang实现建议断点调试器
开发语言·后端·golang
地平线开发者1 小时前
理想汽车智驾方案介绍 3|MoE+Sparse Attention 高效结构解析
算法·自动驾驶
大翻哥哥1 小时前
Python地理空间数据分析:从地图绘制到智能城市应用
开发语言·python·数据分析
NPE~1 小时前
[手写系列]Go手写db — — 第二版
开发语言·数据库·golang·教程·db·手写系列
M_Reus_111 小时前
Groovy集合常用简洁语法
java·开发语言·windows
好学且牛逼的马2 小时前
golang 10指针
开发语言·c++·golang
小O的算法实验室2 小时前
2025年KBS SCI1区TOP,矩阵差分进化算法+移动网络视觉覆盖无人机轨迹优化,深度解析+性能实测
算法·论文复现·智能算法改进