备战秋招60天算法挑战,Day28

题目链接: https://leetcode.cn/problems/climbing-stairs/

视频题解: https://www.bilibili.com/video/BV1h1421t7W3/

LeetCode 70.爬楼梯

题目描述

假设你正在爬楼梯。需要n阶你才能到达楼顶。

每次你可以爬12个台阶。你有多少种不同的方法可以爬到楼顶呢?

举个例子:

输入: n = 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1阶 + 1阶
2. 2阶

视频题解

爬楼梯

思路来源

思路来源

知识回顾

动态规划 是一种通过将原问题分解为子问题来求解复杂问题的算法思想。它通常用于求解最优化问题 ,例如最长公共子序列、背包问题等。动态规划的核心思想是将原问题分解为若干个子问题,通过求解子问题的最优解推导出原问题的最优解。可以通过两点来判断一个问题能不能通过动态规划来解,一是该问题是否存在递归结构,二是对应的子问题能否记忆化。动态规划可以通过带备忘录的自上而下的递归自下而上的迭代 来分别实现。由于递归需要用到栈来实现,一些语言对递归的深度是有限制的,所以自下而上的迭代是动态规划的最佳实现方式

思路解析

假设只有4个台阶,0阶代表地面。

整个爬楼梯的过程对应的决策树可以表示成下图:

每个节点的值表示剩余的台阶数,从根节点到叶子结点组成的路径代表一种爬楼梯的方法。

整个决策树存在递归结构,还存在重复子问题两个节点2三个节点1,这些子问题计算一次后可以直接保存下来,避免多次重复计算。这就满足了使用动态规划的条件:存在递归结构子问题可以记忆化 。所以本题可以用动态规划 来解,动态规划 的两个核心点是推导状态转移公式边界处理

定义dp[i]i个台阶对应的爬楼梯的方法个数dp[i]的准确定义是推导状态转移公式的关键。

因为每次只能爬12个台阶,从上面的图可以看出4个台阶的爬楼梯方法可以拆解成32个台阶爬楼梯方法之和。说白了就是节点4到叶子节点0的所有路径等于节点3节点2到叶子节点路径的总和。
d p [ 4 ] = d p [ 3 ] + d p [ 2 ] dp[4] = dp[3] + dp[2] dp[4]=dp[3]+dp[2]

4个台阶进一步扩展到n个台阶,我们得到下面的状态转移公式
d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] , 1 < i < = n dp[i] = dp[i-1] + dp[i-2], 1 < i <= n dp[i]=dp[i−1]+dp[i−2],1<i<=n

接下来进行边界处理 ,根据上面的公式可知 d p [ 2 ] = d p [ 1 ] + d p [ 0 ] dp[2] = dp[1] + dp[0] dp[2]=dp[1]+dp[0],很显然dp[1] = 1dp[2] = 2,上面也说到0阶代表地面,为了写代码方便这里我们定义dp[0] = 1

C++代码

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        //因为有n阶台阶,台阶从0开始计算,所以定义n+1个元素
        vector<int> dp(n+1, 0);
        //定义边界dp[0]=1
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; ++i) {
            //状态转移公式
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
};

java代码

java 复制代码
class Solution {
    public int climbStairs(int n) {
        // 因为有n阶台阶,台阶从0开始计算,所以定义n+1个元素
        int[] dp = new int[n + 1];
        // 定义边界dp[0]=1
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; ++i) {
            // 状态转移公式
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
}

python代码

python 复制代码
class Solution:
    def climbStairs(self, n: int) -> int:
        # 因为有n阶台阶,台阶从0开始计算,所以定义n+1个元素
        dp = [0] * (n + 1)
        # 定义边界dp[0]=1
        dp[0] = 1
        dp[1] = 1
        for i in range(2, n + 1):
            # 状态转移公式
            dp[i] = dp[i-1] + dp[i-2]
        return dp[n]

上面的代码实现使用了一个长为n+1dp数组,我们观察状态转移公式的规律,其实并不需要保存每个台阶数为i的爬楼梯方法,可以通过两个整型变量来优化上面的实现。

c++代码

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        int pre = 1;
        int next = 1;
        for (int i = 2; i <= n; ++i) {
            int temp = next;
            next = pre + next;
            pre = temp;
        }
        return next;
    }
};

java代码

java 复制代码
class Solution {
    public int climbStairs(int n) {
        int pre = 1;
        int next = 1;
        for (int i = 2; i <= n; ++i) {
            int temp = next;
            next = pre + next;
            pre = temp;
        }
        return next;
    }
}

python代码

python 复制代码
class Solution:
    def climbStairs(self, n: int) -> int:
        pre = 1
        next = 1
        for i in range(2, n + 1):
            temp = next
            next = pre + next
            pre = temp
        return next

复杂度分析

时间复杂度: 两种实现方式的时间复杂度都是O(n)n为台阶的个数。

空间复杂度: 第一种实现方式的空间复杂度为O(n)n为台阶的个数。第二种实现方式的空间复杂度为O(1)

相关推荐
上海拔俗网络4 分钟前
“AI应急管理系统:未来城市安全的守护者
java·团队开发
2401_858286119 分钟前
109.【C语言】数据结构之求二叉树的高度
c语言·开发语言·数据结构·算法
天之涯上上11 分钟前
JAVA开发Erp时日志报错:SQL 当 IDENTITY_INSERT 设置为 OFF 时,不能为表 ‘***‘ 中的标识列插入显式值
java·开发语言·sql
m0_7482370512 分钟前
web的五个Observer API
java·前端·javascript
huapiaoy15 分钟前
数据结构---Map&Set
数据结构
HUT_Tyne26516 分钟前
力扣--LCR 53.最大数组和
算法·leetcode·动态规划
南宫生16 分钟前
力扣-数据结构-1【算法学习day.72】
java·数据结构·学习·算法·leetcode
yuanbenshidiaos19 分钟前
数据结构---------二叉树前序遍历中序遍历后序遍历
数据结构
MyselfO(∩_∩)O22 分钟前
数据结构与算法作业(五)
算法
^南波万^23 分钟前
数据结构--排序
数据结构