Kubernetes部署并管理EFK Stack

Kubernetes

Kubernetes 是一个可移植、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。

主要概念

  • Pod:在 Kubernetes 中创建和管理的、最小的可部署的计算单元。
  • Service: Service 是 将运行在一个或一组 Pod 上的网络应用程序公开为网络服务的方法。
  • Deployment: 管理一组 Pod 的部署和扩展,并向应用程序提供声明性更新。

为什么使用Kubernetes?

  • 可扩展性: 根据需求轻松扩展或缩小应用程序。
  • 高可用性:使用所需数量的实例运行应用程序,并使其在多个节点上运行。
  • 服务发现和负载平衡:Kubernetes 可以使用 DNS 名称或 IP 地址公开容器。如果容器的流量很高,Kubernetes 能够进行负载平衡并分配网络流量。

EFK Stack

EFK Stack结合了 Elasticsearch、Fluentd 和 Kibana,可聚合、存储和可视化 Kubernetes 环境中多个来源的日志。

主要组件

  • Elasticsearch :分布式、RESTful 搜索和分析引擎,能够解决越来越多的用例。
  • Fluentd :用于统一日志记录的开源数据收集器,它允许您统一数据收集和消费,以便更好地使用和理解数据。
  • Kibana :在 Elasticsearch 之上工作的可视化层,提供用户友好的界面来可视化数据。

ELK优势

  • 集中日志记录:聚合集群中所有节点和 Pod 的日志,使监控和故障排除更加容易。
  • 可扩展性:Elasticsearch 可轻松扩展,使能够高效地存储和查询大量数据。
  • 强大的可视化:Kibana 为您的日志数据提供强大且美观的可视化,帮助调试和了解应用程序性能。

在 Kubernetes 上部署 EFK Stack

在 Kubernetes 上部署 EFK Stack涉及设置每个组件用来协作。本文章将遵循使用清单文件的手动部署方法。

部署Elasticsearch

Elasticsearch - EFK Stack的后端 - 基本上是一个基于文档的 NoSQL 数据库,默认在端口 9200 上运行。

Elasticsearch 不仅存储数据,还通过利用复制来确保数据持久性和故障恢复。为了确保数据的快速可用性,除了复制之外,它还使用分片。

在elasticsearch集群中,它是协调操作和管理更改的主节点。

yaml 复制代码
apiVersion: apps/v1
kind: Deployment
metadata:
  name: elasticsearch
spec:
  replicas: 2
  selector:
    matchLabels:
      component: elasticsearch
  template:
    metadata:
      labels:
        component: elasticsearch
    spec:
      containers:
      - name: elasticsearch
        image: docker.elastic.co/elasticsearch/elasticsearch:7.9.3
        ports:
        - containerPort: 9200

部署Fluentd

Fluentd - 日志传送器 - 利用各种插件来过滤和转换日志数据。这些插件在 fluidd 配置文件中定义,该文件使用 .conf 扩展名。

Fluentd 使用内存缓冲机制来确保可靠地将日志传送到 Elasticsearch。

yaml 复制代码
apiVersion: v1
kind: ConfigMap
metadata:
  name: fluentd-config
data:
  fluent.conf: |
    <match **>
      @type elasticsearch
      host elasticsearch
      port 9200
      logstash_format true
    </match>
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd
  labels:
    app: fluentd
spec:
  selector:
    matchLabels:
      name: fluentd
  template:
    metadata:
      labels:
        name: fluentd
    spec:
      containers:
      - name: fluentd
        image: fluent/fluentd-kubernetes-daemonset:v1.14.6-debian-elasticsearch7-1.0
        volumeMounts:
        - name: fluentd-config
          mountPath: /fluentd/etc/fluent.conf
          subPath: fluent.conf
        - name: varlog
          mountPath: /var/log
      volumes:
      - name: fluentd-config
        configMap:
          name: fluentd-config
      - name: varlog
        hostPath:
          path: /var/log

部署Kibana

Kibana - 可视化 - 通过图形和图表提供广泛的数据呈现功能,默认在端口 5601 上运行。

yaml 复制代码
apiVersion: apps/v1
kind: Deployment
metadata:
 name: kibana
spec:
 replicas: 1
 selector:
   matchLabels:
     component: kibana
 template:
   metadata:
     labels:
       component: kibana
   spec:
     containers:
     - name: kibana
       image: docker.elastic.co/kibana/kibana:7.9.3
       ports:
       - containerPort: 5601

在 Kubernetes 上部署 Elasticsearch

设置StatefulSet

StatefulSet 非常适合 Elasticsearch 等有状态应用程序。它们为每个 Pod 提供稳定、唯一的网络标识符和持久存储。

创建StatefulSet

下面是 Elasticsearch 的 StatefulSet 定义的基本示例。

yaml 复制代码
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: elasticsearch
spec:
  serviceName: "elasticsearch"
  replicas: 3
  selector:
    matchLabels:
      app: elasticsearch
  template:
    metadata:
      labels:
        app: elasticsearch
    spec:
      containers:
      - name: elasticsearch
        image: docker.elastic.co/elasticsearch/elasticsearch:7.9.3
        ports:
        - containerPort: 9200
          name: es-http
        volumeMounts:
        - name: es-data
          mountPath: /usr/share/elasticsearch/data
  volumeClaimTemplates:
  - metadata:
      name: es-data
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 10Gi

此 YAML 文件定义了一个名为 elasticsearch 的 StatefulSet,具有三个副本。它指定使用 Elasticsearch 7.9.3 Image

和数据存储的PVC。

配置PV

  • 持久卷 (PV):表示集群中由管理员配置或使用存储类动态配置的一块存储。
  • 持久卷声明 (PVC):用户对存储的请求。它指定大小和访问模式,并且可以链接到特定的 PV。
yaml 复制代码
volumeClaimTemplates:
- metadata:
    name: es-data
  spec:
    accessModes: [ "ReadWriteOnce" ]
    resources:
      requests:
        storage: 10Gi

此配置为每个 Elasticsearch Pod 请求具有 ReadWriteOnce 访问模式的 10Gi 卷。如果设置了动态配置或将 PVC 绑定到手动创建的 PV,则 Kubernetes 集群会自动配置此存储。

设置SVC

yaml 复制代码
apiVersion: v1
kind: Service
metadata:
  name: elasticsearch
spec:
  selector:
    app: elasticsearch
  ports:
  - port: 9200
    targetPort: es-http
  type: ClusterIP

此 YAML 文件创建一个名为 elasticsearch 的服务,该服务以标签为 app:elasticsearch 的 Pod 为目标。它使得 Elasticsearch HTTP API 在集群内可以通过服务的集群 IP 进行访问。

在 Kubernetes 上部署 Fluentd

通过DaemonSet部署Fluentd

DaemonSet 确保 pod 的副本在集群中的每个节点上运行。这非常适合日志收集,因为我们希望 Fluentd 从每个节点收集日志。

创建配置

首先,创建一个 Fluentd 配置文件(例如 fluentd-config.conf),指定如何收集和转发日志。

<source>
 @type forward
 port 24224
 bind 0.0.0.0
</source>
<match **>
 @type elasticsearch
 host elasticsearch.default.svc.cluster.local
 port 9200
 logstash_format true
</match>
  • source: 输入源
  • match: 输出地址
  • filter: 事件处理pipeline
  • system: 系统范围配置
  • label: 对输出和过滤器进行分组以进行内部路由
  • worker:限制特定的工作节点
  • @include: 包含其他文件
定义DaemonSet

fluentd-daemonset.yaml

yaml 复制代码
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd
  namespace: kube-system
spec:
  selector:
    matchLabels:
      name: fluentd
  template:
    metadata:
      labels:
        name: fluentd
    spec:
      containers:
      - name: fluentd
        image: fluent/fluentd-kubernetes-daemonset:v1.11-debian-elasticsearch
        env:
        - name: FLUENT_ELASTICSEARCH_HOST
          value: "elasticsearch.default.svc.cluster.local"
        - name: FLUENT_ELASTICSEARCH_PORT
          value: "9200"
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: dockercontainers
          mountPath: /var/lib/docker/containers
          readOnly: true
      volumes:
      - name: varlog
        hostPath:
          path: /var/log
      - name: dockercontainers
        hostPath:
          path: /var/lib/docker/containers

配置Fluentd对集群日志进行处理

Fluentd 需要配置为从 Kubernetes 节点和 Pod 收集日志。之前在 fluentd-config.conf 中定义的配置设置 Fluentd 监听日志并将其转发到 Elasticsearch。

Node Logs

DaemonSet 配置将 /var/log 目录从主机挂载到 Fluentd 容器中,允许 Fluentd 从节点访问和收集系统和应用程序日志。

Pod Logs

同样,挂载 /var/lib/docker/containers 使 Fluentd 能够从 Docker 容器收集日志,包括由 Kubernetes Pod 管理的容器。

Forwarding Logs to Elasticsearch

Fluentd 配置指定 Elasticsearch 作为日志的目标。确保 Elasticsearch 正在运行并且可以从 Kubernetes 集群内访问。

<match **>
 @type elasticsearch
 host elasticsearch.default.svc.cluster.local
 port 9200
 logstash_format true
</match>

上述配置将所有收集的日志转发到 Elasticsearch,在那里可以对日志进行索引并使其可搜索。

使用了输出插件 Fluent-plugin-elasticsearch,该插件用于将数据转发到 Elasticsearch。匹配部分显示它使用的参数。

在 Kubernetes 上部署 Kibana

部署Kibana

yaml 复制代码
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
    spec:
      containers:
      - name: kibana
        image: docker.elastic.co/kibana/kibana:7.10.0
        env:
          - name: ELASTICSEARCH_HOSTS
            value: "http://elasticsearch:9200"
        ports:
        - containerPort: 5601

此 YAML 文件定义了一个名为 kibana 的具有单个副本的部署。它使用官方 Kibana 映像并通过 ELASTICSEARCH_HOSTS 环境变量连接到 Elasticsearch。

Kibana 默认使用端口 5601,并使用 HTTP REST API 与 ELasticsearch 进行通信。为了保护 Kibana,应启用 Elasticsearch 的安全功能。

yaml 复制代码
apiVersion: v1
kind: Service
metadata:
  name: kibana
spec:
  type: NodePort
  ports:
  - port: 5601
    targetPort: 5601
    nodePort: 30001
  selector:
    app: kibana

Service在 NodePort 上公开 Kibana,以便从集群外部进行访问。

Monitoring && Alerting

监控 EFK Stack有助于确保日志系统以最佳性能运行。以便尽早检测问题,例如 Elasticsearch 存储空间不足或 Fluentd 遇到高延迟。

Prometheus with EFK

Prometheus 是一个用于收集和存储指标的开源监控解决方案。将 Prometheus 与 EFK Stack集成能够收集有关每个组件的性能和运行状况的指标。

Prometheus 允许每个作业的抓取间隔配置,这在抓取哪些目标以及抓取频率方面提供了极大的灵活性。

设置Prometheus

首先,在 Kubernetes 集群中安装 Prometheus。可以使用 Prometheus Operator 来更轻松地管理。

bash 复制代码
kubectl create -f https://raw.githubusercontent.com/prometheus-operator/prometheus-operator/master/bundle.yaml
配置Prometheus监控EFK
  • 使用 elasticsearch-exporter 将 Elasticsearch Metrics公开给 Prometheus
yaml 复制代码
   apiVersion: monitoring.coreos.com/v1
   kind: ServiceMonitor
   metadata:
     name: elasticsearch-exporter
     labels:
       team: backend
   spec:
     selector:
       matchLabels:
         app: elasticsearch-exporter
     endpoints:
     - port: http
  • Fluentd Metrics可以使用内置的 Prometheus 插件公开。
yaml 复制代码
   <source>
     @type prometheus
     port 24231
   </source>
  • Kibana 本身并不导出 Prometheus Metrcis,但可以使用 kibana-prometheus-exporter 插件。

Grafana可视化

yaml 复制代码
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: grafana-pvc
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: grafana
  name: grafana
spec:
  selector:
    matchLabels:
      app: grafana
  template:
    metadata:
      labels:
        app: grafana
    spec:
      securityContext:
        fsGroup: 472
        supplementalGroups:
          - 0
      containers:
        - name: grafana
          image: grafana/grafana:latest
          imagePullPolicy: IfNotPresent
          ports:
            - containerPort: 3000
              name: http-grafana
              protocol: TCP
          readinessProbe:
            failureThreshold: 3
            httpGet:
              path: /robots.txt
              port: 3000
              scheme: HTTP
            initialDelaySeconds: 10
            periodSeconds: 30
            successThreshold: 1
            timeoutSeconds: 2
          livenessProbe:
            failureThreshold: 3
            initialDelaySeconds: 30
            periodSeconds: 10
            successThreshold: 1
            tcpSocket:
              port: 3000
            timeoutSeconds: 1
          resources:
            requests:
              cpu: 250m
              memory: 750Mi
          volumeMounts:
            - mountPath: /var/lib/grafana
              name: grafana-pv
      volumes:
        - name: grafana-pv
          persistentVolumeClaim:
            claimName: grafana-pvc
---
apiVersion: v1
kind: Service
metadata:
  name: grafana
spec:
  ports:
    - port: 3000
      protocol: TCP
      targetPort: http-grafana
  selector:
    app: grafana
  sessionAffinity: None
  type: LoadBalancer

Note: 这是一个示例片段。要尝试执行任务,请使用相应任务语句中提供的 URL。

配置Alerting

Prometheus Alertmanager 可以管理 Prometheus 发送的警报。根据 EFK Metrics定义警报规则。

例如,如果 Elasticsearch 的堆使用率过高,则创建警报。

yaml 复制代码
   groups:
   - name: elasticsearch-alerts
     rules:
     - alert: ElasticsearchHighHeapUsage
       expr: elasticsearch_jvm_memory_used_bytes / elasticsearch_jvm_memory_max_bytes > 0.9
       for: 5m
       labels:
         severity: critical
       annotations:
         summary: "High Heap Usage (instance {{ $labels.instance }})"
         description: "Elasticsearch node {{ $labels.node }} heap usage is above 90%."

设置 Alertmanager 以在触发警报时通过电子邮件、Slack 或其他渠道发送通知。

yaml 复制代码
   global:
     resolve_timeout: 5m
   route:
     receiver: 'slack-notifications'
   receivers:
   - name: 'slack-notifications'
     slack_configs:
     - channel: '#alerts'
相关推荐
Algorithm157610 分钟前
云原生相关的 Go 语言工程师技术路线(含博客网址导航)
开发语言·云原生·golang
蜜獾云1 小时前
docker 安装雷池WAF防火墙 守护Web服务器
linux·运维·服务器·网络·网络安全·docker·容器
年薪丰厚2 小时前
如何在K8S集群中查看和操作Pod内的文件?
docker·云原生·容器·kubernetes·k8s·container
zhangj11252 小时前
K8S Ingress 服务配置步骤说明
云原生·容器·kubernetes
岁月变迁呀2 小时前
kubeadm搭建k8s集群
云原生·容器·kubernetes
墨水\\2 小时前
二进制部署k8s
云原生·容器·kubernetes
Source、2 小时前
k8s-metrics-server
云原生·容器·kubernetes
上海运维Q先生2 小时前
面试题整理15----K8s常见的网络插件有哪些
运维·网络·kubernetes
颜淡慕潇2 小时前
【K8S问题系列 |19 】如何解决 Pod 无法挂载 PVC问题
后端·云原生·容器·kubernetes
ProtonBase3 小时前
如何从 0 到 1 ,打造全新一代分布式数据架构
java·网络·数据库·数据仓库·分布式·云原生·架构