14.神经网络的基本骨架 - nn.Module 的使用

神经网络的基本骨架 - nn.Module 的使用

Pytorch官网左侧:Python API(相当于package,提供了一些不同的工具)

关于神经网络的工具主要在torch.nn里

网站地址:torch.nn --- PyTorch 1.8.1 documentation

Containers

Containers 包含6个模块:

  • Module
  • Sequential
  • ModuleList
  • ModuleDict
  • ParameterList
  • ParameterDict

其中最常用的是 Module 模块 (为所有神经网络提供基本骨架)

CLASS torch.nn.Module  #搭建的Model都必须继承该类

模板:

import torch.nn as nn
import torch.nn.functional as F
 
class Model(nn.Module):   #搭建的神经网络 Model继承了 Module类(父类)
    def __init__(self):   #初始化函数
        super(Model, self).__init__()   #必须要这一步,调用父类的初始化函数
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)
 
    def forward(self, x):   #前向传播(为输入和输出中间的处理过程),x为输入
        x = F.relu(self.conv1(x))   #conv为卷积,relu为非线性处理
        return F.relu(self.conv2(x))

代码中比较重要:

前向传播 forward(在所有子类中进行重写)

反向传播 backward

实战

先介绍pycharm的实用工具,使用 Code ---> Generate ---> Override Methods 可以自动补全代码

例子:

import torch
from torch import nn
 
 
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()
 
    # def __init__(self):
    #     super(Tudui, self).__init__()
 
    def forward(self,input):
        output = input + 1
        return output
 
tudui = Tudui()   #拿Tudui模板创建出的神经网络
x = torch.tensor(1.0)  #将1.0这个数转换成tensor类型
output = tudui(x)
print(output)

上面的代码根据网站所提供的案例模版得到

运行结果:

debug看流程

在下列语句前打断点:

tudui = Tudui()   #整个程序的开始

然后点击蜘蛛,点击 Step into My Code,可以看到代码每一步的执行过程

i() #整个程序的开始

然后点击蜘蛛,点击 Step into My Code,可以看到代码每一步的执行过程

[外链图片转存中...(img-8Rp3mCOt-1724861486484)]
相关推荐
孙同学要努力5 分钟前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20215 分钟前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧31 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽1 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_1 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
SongYuLong的博客2 小时前
Air780E基于LuatOS编程开发
人工智能
Jina AI2 小时前
RAG 系统的分块难题:小型语言模型如何找到最佳断点?
人工智能·语言模型·自然语言处理
-派神-2 小时前
大语言模型(LLM)量化基础知识(一)
人工智能·语言模型·自然语言处理
johnny_hhh2 小时前
AI大模型重塑软件开发流程:定义、应用场景、优势、挑战及未来展望
人工智能
Elastic 中国社区官方博客2 小时前
释放专利力量:Patently 如何利用向量搜索和 NLP 简化协作
大数据·数据库·人工智能·elasticsearch·搜索引擎·自然语言处理