【论文阅读】Automatic Modulation Classification Based Deep Learning: A Review(2022)

摘要

Automatic Modulation Recognition(自动调制识别) (AMR) is a critical component of(重要组成部分) smart communication(智能通信) and it contributed(促进了) to the development of many applications(许多应用的发展) such as Cognitive Radio(认知无线电) (CR). Therefore(因此), many researchers(许多研究者) have been interested in this field(对这一领域产生了兴趣). In this paper, a brief review(简要的综述) of AMR. More specifically(更具体地说), classification methods(分类方法) using Deep Learning (DL), especially those that give high accuracies(高精度), Such as Convolutional Neural Networks(卷积神经网络) (CNN), take into account(考虑) the database, the method of extracting features(提取特征的方法), and the number of modulation types for each(每种调试类型的数量) (SNR). Accordingly(此外), this paper demonstrates(论证) that the best classification accuracy results(最好的分类精度效果) are obtained using (DL) when using CNN. In recent research, the accuracy has been obtained reaching more than 90% when the classification is for 24 different types of modulation(24种不同的调制类型) and the size of the signal(信道大小) is 2.5 million.

关键词

Automatic Modulation Recognition,自动调制识别

Deep Learning,深度学习

Convolutional Neural Networks,卷积神经网络

引言

在大多数情况下,AMC技术主要分为两种方法:基于似然(likelihood)的方法(LB)和基于特征(features)的方法(FB),尽管LB技术获得了最好的分类结果,但它有相当大的局限性,包括高计算复杂度和对实时系统难以实现的挑战。另一方面,FB采取了不同的策略。

传统的FB技术分为特征提取(feature extraction)和特征分析(feature extraction )两部分。

信号数据集

Radio ML 2016.10A数据集

5\] T. O'Shea and N. West, "Radio Machine Learning Dataset Generation with GNU Radio", Proceedings of the GNU Radio Conference, vol. 1, no. 1, PP.3-6. 2016. ### Radio ML 2018.01A数据集 \[6\] T. J. O'Shea, T. Roy, and T. C. Clancy, "Over-the-Air Deep Learning-Based Radio Signal Classification", vol. 12, no. 1, pp.168--179, 2018. ### HisarMod2019.1数据集 \[7\] K. Tekbiyik, A. R. Ekti, A. Gorcin, G. K. Kurt, and C. Kececi, "Robust and Fast Automatic Modulation Classification with CNN under Multipath Fading Channels", y Conference (VTC2020-Spring)PP.1-6,2020 ## 模型架构 ### 卷积网络CNN 卷积层、池化层、全连接层 ## 模型输入数据 真实IQ数据 模拟IQ数据 图像数据 其他类型 ## 论文链接 [Automatic Modulation Classification Based Deep Learning: A Review](https://ieeexplore.ieee.org/abstract/document/9944715)

相关推荐
jifengzhiling13 分钟前
零极点对消:原理、作用与风险
人工智能·算法
哥布林学者14 分钟前
吴恩达深度学习课程四:计算机视觉 第三周:检测算法 (一)目标定位与特征点检测
深度学习·ai
科技看点14 分钟前
想帮帮服务智能体荣获2025 EDGE AWARDS「最佳AI创新应用」大奖
人工智能
m0_7048878919 分钟前
DAY 40
人工智能·深度学习
Katecat9966326 分钟前
【海滩垃圾检测与分类识别-基于改进YOLO13-seg-iRMB模型】
人工智能·数据挖掘
程序员佳佳42 分钟前
2025年大模型终极横评:GPT-5.2、Banana Pro与DeepSeek V3.2实战硬核比拼(附统一接入方案)
服务器·数据库·人工智能·python·gpt·api
鲨莎分不晴1 小时前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习
工业机器视觉设计和实现1 小时前
lenet改vgg成功后,我们再改为最简单的resnet
人工智能
jiayong231 小时前
Spring AI Alibaba 深度解析(三):实战示例与最佳实践
java·人工智能·spring
m0_692457101 小时前
阈值分割图像
图像处理·深度学习·计算机视觉