Java技术栈 —— Spark入门(二)之实时WordCount

Java技术栈 ------ Spark入门(二)

  • 一、kafka
    • [1.1 创建topic](#1.1 创建topic)
    • [1.2 准备input与查看output](#1.2 准备input与查看output)
  • 二、spark
    • [2.1 spark下的程序文件](#2.1 spark下的程序文件)
    • [2.2 用spark-submit提交作业](#2.2 用spark-submit提交作业)

参考文章:

参考文章或视频链接
[1] 《Kafka + Spark Stream实时WordCount》

实验环境:

假设你的用户为root,以下软件安装路径为/opt

软件版本
spark: 3.5.2 (scala 2.12)
kafka: 3.8.0 (scala 2.13)

实验结构图

一、kafka

1.1 创建topic

sh 复制代码
# 创建input
bin/kafka-topics.sh --bootstrap-server localhost:9092 --create --topic test.wordcount.input --partitions 1 --replication-factor 1
# 创建output
bin/kafka-topics.sh --bootstrap-server localhost:9092 --create --topic test.wordcount.output --partitions 1 --replication-factor 1

1.2 准备input与查看output

sh 复制代码
# 打开两个terminal终端
# 准备键盘输入作为prodcuer
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test.wordcount.input
# 在屏幕上查看输出
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test.wordcount.output

二、spark

2.1 spark下的程序文件

python 复制代码
# coding=utf-8
# /opt/spark-3.5.2-bin-hadoop3/jobs/pyjobs/kafka-wordcount.py
from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark.sql.functions import explode
from pyspark.sql.functions import split
from pyspark.sql import functions as F

bootstrapServers = "localhost:9092"

spark = SparkSession\
    .builder\
    .appName("StructuredKafkaWordCount")\
    .getOrCreate()

# 基于来自kafka的数据流,创建dataframe
lines = spark\
    .readStream\
    .format("kafka")\
    .option("kafka.bootstrap.servers", bootstrapServers)\
    .option("subscribe", "test.wordcount.input")\
    .option("failOnDataLoss", False)\
    .option("group.id", "wordcount-group3")\
    .load()\
    .selectExpr("CAST(value AS STRING)")

# 将单行数据拆分,转成多行数据
words = lines.select(
    explode(split(lines.value, ' ')).alias('word')
)

# 对单词进行分组,并计算总数
wordCounts = words.groupBy('word').count()

# 将两列数据合并成单列数据
wordCounts = wordCounts.select(F.concat(F.col("word"), F.lit("|"), F.col("count").cast("string")).alias("value"))

# 测试时,可以不将结果写入kafka,直接输出到控制台
# query = wordCounts \
#     .writeStream \
#     .outputMode("complete") \
#     .format("console") \
#     .start()

# 将结果输出到 test.wordcount.output
query = wordCounts \
    .writeStream \
    .format('kafka') \
    .outputMode('update') \
    .option("kafka.bootstrap.servers", bootstrapServers) \
    .option('checkpointLocation', '/spark/job-checkpoint') \
    .option("topic", "test.wordcount.output") \
    .start()

query.awaitTermination()

2.2 用spark-submit提交作业

shell 复制代码
# 提交Spark作业,这个过程需要保证网络畅通,会将一些依赖下载到/root/.ivy2/jars目录下
$SPARK_HOME/bin/spark-submit \
--packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.5.2,\
org.apache.kafka:kafka-clients:3.5.2 \
/opt/spark-3.5.2-bin-hadoop3/jobs/pyjobs/kafka-wordcount.py
相关推荐
武子康3 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
卡尔特斯4 小时前
Android Kotlin 项目代理配置【详细步骤(可选)】
android·java·kotlin
白鲸开源4 小时前
Ubuntu 22 下 DolphinScheduler 3.x 伪集群部署实录
java·ubuntu·开源
ytadpole4 小时前
Java 25 新特性 更简洁、更高效、更现代
java·后端
纪莫4 小时前
A公司一面:类加载的过程是怎么样的? 双亲委派的优点和缺点? 产生fullGC的情况有哪些? spring的动态代理有哪些?区别是什么? 如何排查CPU使用率过高?
java·java面试⑧股
JavaGuide5 小时前
JDK 25(长期支持版) 发布,新特性解读!
java·后端
用户3721574261355 小时前
Java 轻松批量替换 Word 文档文字内容
java
白鲸开源5 小时前
教你数分钟内创建并运行一个 DolphinScheduler Workflow!
java
Java中文社群6 小时前
有点意思!Java8后最有用新特性排行榜!
java·后端·面试
代码匠心6 小时前
从零开始学Flink:数据源
java·大数据·后端·flink