神经网络搭建实战与Sequential的使用

一、需要处理的图像

二、对上述图片用代码表示:

复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class SUN(nn.Module):
    def __init__(self):
        super(SUN, self).__init__()
        self.conv1 = Conv2d(3, 32, 5, padding=2)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(32, 32, 2,padding=2)
        self.maxpool2 = MaxPool2d(2)
        self.conv3 = Conv2d(32, 64, 5, padding=2)
        self.maxpool3 = MaxPool2d(2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024, 64)
        self.linear2 = Linear(64, 10)

    def forward(self,x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


sun = SUN()
print(sun)

# 写完网络检查网络的正确性,因为即使改变其中的一些参数,该网络还是能够正常的运行,所以需要检验
# 创建一个假象的输入
input = torch.ones((64,3,32,32))
output = sun(input)
print(output.shape)

实现的结果:

三、用 Sequential简化

但是,在class的使用中,频繁的写self.....是非常复杂,不简洁的,于是有了Sequential:

代码如下简洁:

复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential


class SUN(nn.Module):
    def __init__(self):
        super(SUN, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 2, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x =self.model1(x)
        return x


sun = SUN()
print(sun)

# 写完网络检查网络的正确性,因为即使改变其中的一些参数,该网络还是能够正常的运行,所以需要检验
# 创建一个假象的输入
input = torch.ones((64,3,32,32))
output = sun(input)
print(output.shape)

实现的结果是一样的,但是,较为的简洁。

四、使用tensorboard可视化

复制代码
# 使用tensorboard来可视化:
writer = SummaryWriter("logs_seq")
writer.add_graph(sun, input)
writer.close()

注意,此处使用的是add_graph()。

tensorboard中的add_graph方法用于可视化ptorch模型的计算图。‌TensorBoard是一个强大的可视化工具,它允许用户以交互式的方式查看和理解模型的训练过程和结构。在PyTorch中,add_graph方法是SummaryWriter类的一个功能,它可以将PyTorch模型的计算图以图形化的形式展示出来。通过这种方法,用户可以直观地看到模型中各个操作之间的依赖关系,以及数据在模型中的流动情况。这对于理解模型的内部工作机制、调试模型以及优化模型设计都非常有帮助。

tensorboard显示不出来的问题:使用了下述语句查看:

python 复制代码
tensorboard --logdir =learningplan1/logs_seq

结果:

对其改正:加入端口6007

python 复制代码
tensorboard --logdir=learningplan1/logs_seq --port=6007

最终正确查看,注:双击可以打开网络:

输入,经过搭建的SUN网络到达输出。

通过双击网络模块,可查询相关的参数等:

网络搭建成功。

相关推荐
youngfengying1 小时前
Swin Transformer
人工智能·深度学习·transformer
CNRio3 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll3 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
u***32434 小时前
使用python进行PostgreSQL 数据库连接
数据库·python·postgresql
青瓷程序设计7 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
tobebetter95277 小时前
How to manage python versions on windows
开发语言·windows·python
F_D_Z7 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
daidaidaiyu8 小时前
一文入门 LangGraph 开发
python·ai
阿龙AI日记9 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
不知更鸟9 小时前
前端报错:快速解决Django接口404问题
前端·python·django