目录
[一、list 的简单介绍](#一、list 的简单介绍)
[二、list 的基本使用](#二、list 的基本使用)
[🎉list iterator 的使用](#🎉list iterator 的使用)
[🎉list capacity](#🎉list capacity)
[🎉list element access](#🎉list element access)
[🎉list modifiers](#🎉list modifiers)
[🎉list operator](#🎉list operator)
[三、list 的模拟实现](#三、list 的模拟实现)
[🎉 后置operator++(int) / operator--(int)](#🎉 后置operator++(int) / operator--(int))
[🌟List相关接口函数的模拟实现 :](#🌟List相关接口函数的模拟实现 :)
[🎉深拷贝List(const List& lt)](#🎉深拷贝List(const List& lt))
[🎉List& operator=()](#🎉List& operator=())
[四、list 和 vector 的对比](#四、list 和 vector 的对比)
一、list 的简单介绍

- 
list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向代。 
- 
list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。 
- 
list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。 
- 
与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。 
- 
与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素) 

二、list 的基本使用
🎉list的构造

|---------------------------------------------------------|----------------------------------|
| 构造函数                                                    | 接口说明                             |
| list (size_type n, const value_type& val=value_type()) | 构造的list中包含n个值为val的元素             |
| list()                                                  | 构造空的list                         |
| list (const list& x)                                   | 拷贝构造函数                           |
| list ( InputIterator first, InputIterator last)         | 用 [ first , last ) 区间中的元素构造list |
            
            
              cpp
              
              
            
          
          #include<iostream>
#include<list>
using namespace std; 
int main()
{
    list<int> l1; //构造空的l1
	list<int> l2(4, 100); // 构造4个值为100的元素
	list<int> l3(l2.begin(), l2.end());  //用l2的[begin(),end())左闭右开区间构造l3
	list<int> l4(l3);
	
	//以数组为迭代区间构造l5
	int array[] = { 16,2,77,29 };
	list<int> l5(array, array + sizeof(array) / sizeof(int));//array  array+sizeof(4)
	//列表格式初始化C++11
	list<int> l6{ 1,2,3,4,5 };
	//用迭代器方式打印l5中的元素
	list<int>::iterator it = l5.begin();
	while (it != l5.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	//C++范围for的方式遍历
	for (auto& e : l5)
	{
		cout << e << " ";
	}
	cout << endl;
    return 0;
}
🎉list iterator 的使用


 
 
此处,可以暂时将迭代器理解成一个指针,该指针指向list中的某个结点。
|-------------------|----------------------------------------------------------------------------|
| 函数声明              | 接口说明                                                                       |
| begin() + end()   | 返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器                                              |
| rbegin() + rend() | 返回第一个元素的 reverse_iterator, 即end位置,返回最后一个元素下一个位置的 reverse_iterator,即begin位置 |

            
            
              cpp
              
              
            
          
          //list迭代器的使用
//注意:遍历链表只能用迭代器和范围for
void Printlist( const list<int>& l )
{
	//注意这里调用的是list的 begin() const,返回list的 const_iterator对象
	for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
	{
		cout << *it << " ";
		//*it = 10; 编译不通过
	}
	cout << endl;
}
            
            
              cpp
              
              
            
          
          #include<iostream>
#include<list>
using namespace std;   
int main()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	//使用正向迭代器正向list中的元素
	//list<int>::iterator it=l.begin(); //C++98中的语法
	auto it = l.begin();//C++11之后的推荐写法
	while (it != l.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	//使用反向迭代器逆向打印list中的元素
	//list<int>::reverse_iterator rit = l.rbegin();
	auto rit = l.rbegin();
	while (rit != l.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;
   return 0;
}
【注意】
1、begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
2、rbegin(end) 与 rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动
🎉list capacity

 
 
|------------|------------------------------|
| 函数说明       | 接口说明                         |
| empty()    | 检测list是否为空,是返回ture,否则返回false |
| size()     | 返回list中有效节点的个数               |
| max_size() | 返回列表容器可以容纳的最大元素数             |
            
            
              cpp
              
              
            
          
          #include<iostream>
#include<list>
using namespace std;
int main ()
{
  std::list<int> mylist;
  int sum (0);
  for (int i=1;i<=10;++i) mylist.push_back(i);
  while (!mylist.empty())
  {
     sum += mylist.front();
     mylist.pop_front();
  }
  std::cout << "total: " << sum << '\n';
  
  return 0;
}
            
            
              cpp
              
              
            
          
          #include<iostream>
#include<list>
using namespace std;
int main()
{
    std::list<int> myints;
	std::cout << "0. size: " << myints.size() << '\n';
	for (int i = 0; i < 10; i++)
	{
		myints.push_back(i);
	}
	std::cout << "1. size: " << myints.size() << '\n';
	myints.insert(myints.begin(), 10, 100);
	for (list<int>::const_iterator it = myints.begin(); it != myints.end(); ++it)
	{
		cout << *it << " ";
	}
	cout << endl;
	std::cout << "2. size: " << myints.size() << '\n';
	myints.pop_back();
	std::cout << "3. size: " << myints.size() << '\n';
    return 0;
}
🎉list element access


|-------|------------------------|
| 函数声明  | 接口说明                   |
| front | 返回list的第一个节点中值的引用  |
| back  | 返回list的最后一个节点中值的引用 |
🎉list modifiers


 
 
|--------------|---------------------|
| 函数声明         | 接口说明                |
| push_front() | 在list首元素前插入值为val的元素 |
| pop_front()  | 删除list中第一个元素        |
| push_back()  | 在list的尾部插入值为val的元素  |
| pop_back()   | 删除list中最后一个元素       |
            
            
              cpp
              
              
            
          
          #include<iostream>
#include<list>
using namespace std;
void Printlist(const list<int>& l)
{
	//注意这里调用的是list的begin() const,返回list的 const_iterator对象
	for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
	{
		cout << *it << " ";
		//*it = 10;编译不通过
	}
	cout << endl;
}
int main()
{
   	int array[] = { 1,2,3,4,5,6,7,8,9 };
	list<int> L(array, array + sizeof(array) / sizeof(array[0]));
	//尾插  头插
	L.push_back(4);
	L.push_front(0);
	Printlist(L);
	//尾删  头删
	L.pop_back();
	L.pop_front();
	Printlist(L);
   return 0;
}


|--------|------------------------------|
| 函数声明   | 接口说明                         |
| insert | 在list position 位置中插入值为val的元素 |
| erase  | 删除list position 位置的元素        |
            
            
              cpp
              
              
            
          
          #include<iostream>
#include<list>
#include<vector>
using namespace std;
int main()
{
	int array[] = { 1,2,3 };
	list<int> L(array, array + sizeof(array) / sizeof(array[0]));
	//获取链表中的第二个结点
	//list<int>::iterator it = ++L.begin();
	auto pos = ++L.begin();
	cout << *pos << endl;
	//在pos前插入值为4的元素
	L.insert(pos, 4);
	Printlist(L);
	// 在pos前插入5个值为5的元素
	L.insert(pos, 5, 5);
	Printlist(L);
	// 在pos前插入[v.begin(), v.end)区间中的元素
	vector<int> v{ 7,8,9 };
	L.insert(pos, v.begin(), v.end());
	Printlist(L);
	// 删除pos位置上的元素
	L.erase(pos);
	Printlist(L);
	// 删除list中[begin, end)区间中的元素,即删除list中的所有元素
	L.erase(L.begin(), L.end());
	Printlist(L);
   return 0;
}
 
 

|--------|------------------|
| 函数声明   | 接口说明             |
| swap   | 交换两个list中的元素     |
| resize | 调整容器的大小,使其包含n个元素 |
| clear  | 清空list中的有效元素     |
            
            
              cpp
              
              
            
          
          #include<iostream>
#include<list>
using namespace std;
 
int main()
{
// 用数组来构造list
	int array[] = { 1,2,3 };
	list<int> L1(array, array + sizeof(array) / sizeof(array[0]));
	Printlist(L1);
// 交换l1和l2中的元素
	list<int> L2;
	L1.swap(L2);
	Printlist(L1);
	Printlist(L2);
// 将l2中的元素清空
	L2.clear();
	cout << L2.size() << endl;
   return 0;
}
🎉list operator

(1)将元素从列表转移到列表
(2)将元素从x转移到容器中,并将其插入到指定位置
(3)有效地将这些元素插入容器中,并将其从x中删除,从而改变了两者的大小容器。该操作不涉及任何元素的构造或销毁,无论x是左值还是右值,或者值类型是否支持移动构造,它们都会被转移。
第一个版本(1)将x的所有元素转移到容器中。
第二个版本(2)只将i指向的元素从x转移到容器中
第三个版本(3)将范围[first,last)从x转移到容器中。

|--------|---------------------|
| 函数声明   | 接口函数                |
| splice | 将元素从列表转移到列表(剪切) |
| merge  | 合并已排序列表             |
            
            
              cpp
              
              
            
          
          #include<iostream>
#include<list>
using namespace std;
int main()
{
	std::list<int> mylist1, mylist2;
	std::list<int>::iterator it;
	for (int i = 1; i <= 4; ++i)
		mylist1.push_back(i);        //mylist1: 1 2 3 4
	
	for (int i = 1; i <= 3; ++i)
		mylist2.push_back(i * 10);   //mylist2: 10 20 30
	it = mylist1.begin();
	++it;                        //position to 2
	mylist1.splice(it, mylist2);   //mylist1:  1 10 20 30 2 3 4 
                                  // mylist2(empty)
	return 0;
}三、list 的模拟实现
🌟模拟实现list
list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素,因此模拟实现时,要对双链表的节点进行封装,list对元素进行访问时,不能用普通的迭代器进行访问下一个元素,因为双链表在物理上是不连续的,因此又要对双链表的迭代器进行封装。
这里我们对list的模拟实现放在一个头文件进行实现,我们要写在一个命名空间里面,为了避免命名冲突或名字污染,对(带头双向循环链表)双链表的节点进行封装:
            
            
              cpp
              
              
            
          
          // List.h
namespace xlf
{
	//双链表的定义
	//类模板
	template<class T>
	struct ListNode
	{
		// ListNode<T>*是一个类型 例:int*
		ListNode<T>* _prev; //指向前一个节点的指针
		ListNode<T>* _next;//指向后一个节点的指针
		T _data;//节点的数据
		//构造
		ListNode(const T& data)
			:_prev(nullptr)
			,_next(nullptr)
			,_data(data)
		{}
	};
}• 为什么用 struct 而不用 class 来创建类呢?
struct 不受访问限定符的限制,class 使用受限,如果使用class,则要把成员函数和成员变量全部设为公有,这里的ListNode节点要经常使用。
template 定义的模板参数,只能供当前类或当前函数使用
对List进行封装:
            
            
              cpp
              
              
            
          
          	template<class T>
	class List
	{
		typedef ListNode<T> Node; //为类型取别名
	public:
		//节点初始化
		//双链表有哨兵位
		List()
		{
			_head = new Node(T());//用匿名对象进行初始化
			_head->_prev = _head;
			_head->_next = _head;
		}
		//尾插
		void push_back(const T& x)
		{
			//创建新节点
			Node* newnode = new Node(x);
			//找尾节点
			Node* tail = _head->_prev;
			//连接
			newnode->_prev = tail;//1
			tail->_next = newnode;//2
			newnode->_next = _head;//3
			_head->_prev = newnode;//4
		}
	private:
		Node* _head;
	};哨兵位如何初始化?
此时,当我们对链表的数据进行访问/修改时,我们不能用普通的迭代器进行访问,链表在物理空间上是不连续的,因此我们需要对迭代器进行封装:
            
            
              cpp
              
              
            
          
          	//链表迭代器
	template<class T>
	struct ListIterator
	{
		typedef ListNode<T> Node;//给节点取别名
		typedef ListIterator<T> Self;//給迭代器取别名
		Node* _node;//节点
	public:
		//构造函数
		ListIterator(Node* node)
			:_node(node)
		{}
		//对自定义进行运算符的重载,可控制迭代器的行为
	};现在我们来实现一般所需的重载运算符:
• 对自定义类型运算符的重载,可控制迭代器的行为。
🎉前置operator++/operator--
            
            
              cpp
              
              
            
          
          		Self& operator++()//出了当前作用域不销毁,用传引用返回
		{
			_node = _node->_next;
			return *this;
		}
		Self& operator--()//出了当前作用域不销毁,用传引用返回
		{
			_node = _node->_prev;
			return *this;
		}• 传引用返回 ,是因为出了当前作用域,*this这个值不销毁
• _node=_node->_next 表示这个节点的下一个节点
• _node=_node->_prev 表示这个节点的前一个节点
🎉 后置operator++(int) / operator--(int)
            
            
              cpp
              
              
            
          
          		Self operator++(int)//出了作用域这个值会销毁,用传值返回
		{
			Node* temp(*this);    // d++ :返回的是++之前的值
                                  // 所以要先保留++之前的值
			_node = _node->_next;
			return temp;
		}
		Self operator--(int)//出了作用域这个值会销毁,用传值返回
		{
			Node* temp(*this);    // d-- :返回的是--之前的值
                                  // 所以要先保留--之前的值
			_node = _node->_prev;
			return temp;
		}• 前置++和后置++的区别:(返回值不一样)
++d :返回++之后的值
d++:返回++之前的值
• Node* temp(*this) 表示先保留++/-- 之前的值,当做返回值
•用传值返回,是因为 temp 出了当前作用域后,就会被销毁
🎉operator!=/operator==
            
            
              cpp
              
              
            
          
                  bool operator!=(const Self& it)
		{
			return _node != it._node;
		}
		bool operator==(const Self& it)
		{
			return _node == it._node;
		}🎉operator*()
            
            
              cpp
              
              
            
          
          		T& operator*()
		{
			return _node->_data;
		}为什么重载 operator*() 呢?
• 重载operator*(),是为了可以获取到节点里面的数据。
测试例子:
            
            
              cpp
              
              
            
          
          		List<int>::iterator it = L.begin();
		while (it != L.end())
		{
			cout << *it << " ";
			//*it 解引用要的是数值,不是节点,所以运算符重载了operator*()
			++it;
		}
		cout << endl;🎉operator->()
            
            
              cpp
              
              
            
          
          		const T* operator->()
		{
			return &_node->_data;
		}为什么重载operator->()呢?
看这个例子:
            
            
              cpp
              
              
            
          
          	struct Pos
	{
		int _row;
		int _col;
		Pos( int row = 0,int col = 0)
			:_row(row)
			,_col(col)
		{}
	};
	void test_list3()
	{
		List<Pos> L;
		L.push_back(Pos(100, 100));
		L.push_back(Pos(200, 200));
		L.push_back(Pos(300, 300));
		List<Pos>::iterator it = L.begin();
		while (it !=L. end())
		{
			cout << it->_row << ":" << it->_col << endl;
            //cout << it.operator->()->_row << ":" << it.operator->()->_col << endl;
			++it;
		}
		cout << endl;
	}• 我们访问 int类型,可以用int*,如果我们访问 Pos* 这个自定义类型数据该如何访问?重载运算符,在结构体、类(公有),想访问成员,模拟这个行为,可以用 -> 来进行访问。
• cout << it->_row << ":" << it->_col << endl 实际为:
cout << it.operator->()->_row << ":" << it.operator->()->_col << endl;
第一个->:运算符重载的调用;
第二个->:原生指针

🎉迭代器iterator
此时就可以在List类里面实现部分迭代器:
            
            
              cpp
              
              
            
          
          	template<class T>
	class List
	{
		typedef ListNode<T> Node; //为类型取别名
	public:
		typedef ListIterator<T> iterator;
		
		iterator begin()
		{
			iterator it(_head->_next);
			return it;
		}
		iterator end()
		{
			iterator it(_head);
			return it;
		}
	}测试迭代器:
            
            
              cpp
              
              
            
          
          	void test_list1()
	{
		List<int> L;
		//实例化就报错
		L.push_back(1);
		L.push_back(2);
		L.push_back(3);
		L.push_back(4);
		List<int>::iterator it = L.begin();
		while (it != L.end())
		{
			*it += 10; // *it 解引用,返回的是这个节点的数据
			           // 此时可以修改这个节点数据的内容
			cout << *it << " ";
			//*it 解引用要的是数值,不是节点,所以运算符重载了operator*()
			++it;
		}
		cout << endl;
		for (auto& e : L)
		{
			cout << e << " ";
		}
		cout << endl;
	}

🎉迭代器const_iterator
如何做到自己能修改,指向的内容不能修改?
迭代器只能控制,不能修改的核心行为是 operator*()、operator->(),就是解引用时,要修改的东西。
            
            
              cpp
              
              
            
          
          	// const_iterator
	//链表迭代器
	template<class T>
	struct ListConstIterator
	{
		typedef ListNode<T> Node;//给节点取别名
		typedef ListConstIterator<T> Self;//給迭代器取别名
		Node* _node;//节点
	public:
		//构造函数
		ListConstIterator(Node* node)
			:_node(node)
		{}
		//对自定义进行运算符的重载,可控制迭代器的行为
		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}
		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}
		Self operator++(int)
		{
			Node* temp(*this);
			_node = _node->_next;
			return temp;
		}
		Self operator--(int)
		{
			Node* temp(*this);
			_node = _node->_prev;
			return temp;
		}
		bool operator!=(const Self& it)
		{
			return _node != it._node;
		}
		bool operator==(const Self& it)
		{
			return _node == it._node;
		}
		const T& operator*()
		{
			return _node->_data;
		}
		const T* operator->()
		{
			return &_node->_data;
		}
	};• 实现与iterator()相似,区别就在于operator*() 和 operator->() 这两个运算符重载改为const,
即: const T& operator*(); const T* operator->()
• const iterator const 迭代器不能是普通迭代器前面加 const修饰
const迭代器目的:本身可以修改,指向的内容不能修改
例: const T* p ; p本身可以修改,*p不可以修改
代码测试:
            
            
              cpp
              
              
            
          
          	void Func(const List<int>& lt)
	{
		List<int>::const_iterator it = lt.begin();
		while (it!=lt.end())
		{
			//*it += 10; //const迭代器 指向的内容不能改变
			cout << *it << " ";//可读
			++it;//可遍历
		}
		cout << endl;
	}迭代器的另一种写法:
通过模板,给不同模板参数,让编译器帮我们写两个类(实例化)。
            
            
              cpp
              
              
            
          
          //迭代器的第二种写法:
//template 定义的模板参数,只能供当前类或当前函数使用
	//链表迭代器
	template<class T, class Ref, class Ptr>
	struct ListIterator
	{
		typedef ListNode<T> Node;//给节点取别名
		typedef ListIterator<T, Ref, Ptr> Self;//給迭代器取别名
		Node* _node;//节点
	public:
		//构造函数
		ListIterator(Node* node)
			:_node(node)
		{}
		//对自定义进行运算符的重载,可控制迭代器的行为
		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}
		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}
		Self operator++(int)
		{
			Node* temp(*this);
			_node = _node->_next;
			return temp;
		}
		Self operator--(int)
		{
			Node* temp(*this);
			_node = _node->_prev;
			return temp;
		}
		bool operator!=(const Self& it)
		{
			return _node != it._node;
		}
		bool operator==(const Self& it)
		{
			return _node == it._node;
		}
		Ref operator*()
		{
			return _node->_data;
		}
		Ptr operator->()
		{
			return &_node->_data;
		}
	};• template <class T , class Ref , class Ptr> 通过模板给不同模板参数;
• typedef ListIterator<T, Ref, Ptr> Self; typedef时也要做相应的修改,此时表示当传入的 Ref 和 Ptr 为常量时, Ref 和 Ptr就会替代为常量;当传入的 Ref 和 Ptr 为非常量时, Ref 和 Ptr就会替代为非常量;
• 改变 operator*() 的返回值类型从 T& 修改为 Ref ,
改变 operator->() 的返回值类型从 T* 修改为 Ptr ,
这时返回值的类型看传给 Ref / Ptr 是什么 ;
•此时 List类 中修改
typedef ListIterator<T> iterator ---> typedef ListIterator<T , T&, T*> iterator;
typedef ListConstIterator<T> const_iterator ---> typedef ListIterator<T, const T&, const T*> const_iterator;
🌟List相关接口函数的模拟实现 :
🎉insert()
            
            
              cpp
              
              
            
          
          		//插入(在pos之前插入)
		iterator insert(iterator pos, const T& x)
		{
			//找到Pos位置的节点
			Node* cur = pos._node;
			//开一个新节点
			Node* newnode = new Node(x);
			//找pos的前一个节点
			Node* prev = cur->_prev;
			//连接  prev  newnode cur
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;
			return iterator(newnode);
		}
🎉erase()
            
            
              cpp
              
              
            
          
          		iterator erase(iterator pos)
		{
			//防止删掉哨兵位
			// pos end() 都是迭代器,_head是指针,所以不用
			assert(pos != end());
			//找到pos
			Node* cur = pos._node;
			//pos的前一个节点
			Node* prev = cur->_prev;
			//pos的后一个节点
			Node* next = cur->_next;
			//连接 prev    next
			prev->_next = next;
			next->_prev = prev;
			//删除节点
			delete cur;
			return iterator(next);
		}🌟迭代器失效问题
大家可将迭代器展示理解成类似于指针,迭代器失效及迭代器所指向的节点无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在李斯特中进行插入时是不会导致list的迭代器失效的,只有删除时才会失效,并且时效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。
            
            
              cpp
              
              
            
          
          	void test_list()
	{
		int array[] = { 1,2,3,4,5,6,7,8,9 };
		List<int> L(array, array + sizeof(array) / sizeof(array[0]));
		auto it = L.begin();
		while (it != L.end())
		{
			//erase()函数执行后,it所指向的节点已被删除,
			// 因此it无效,在下一次使用it时,必须先给其重新赋值
			it = L.erase(it);
			++it;
		}
	}🎉尾删/头删/头插
            
            
              cpp
              
              
            
          
          		//尾删
		void pop_back()
		{
			erase(--end());
		}
		//头删
		void pop_front()
		{
		    erase(begin());
		}
		//头插
		void push_front(const T& x)
		{
			insert(begin(), x);
		}直接复用前面模拟实现过的函数。
🎉List()
            
            
              cpp
              
              
            
          
          		//节点初始化
        //双链表有哨兵位
		List()
		{
			_head = new Node(T());//创建一个T()类型的节点
			_head->_prev = _head;//节点前后都指向自己
			_head->_next = _head;
		}因为下面的几个函数实现都需要初始化,所以把初始化写成一个函数。
            
            
              cpp
              
              
            
          
          		//哨兵位头节点
		void empty_init()
		{
			_head = new Node(T());
			_head->_next = _head;
			_head->_prev = _head;
		}
		//节点初始化
        //双链表有哨兵位
		List()
		{
			//_head = new Node(T());//创建一个T()类型的节点
			//_head->_prev = _head;//节点前后都指向自己
			//_head->_next = _head;
			empty_init();
		}🎉深拷贝List(const List<T>& lt)
当不实现深拷贝时,系统会自动调用默认构造,此时就是浅拷贝,会出现一些问题:
此时,L1的更新会影响L2的数据,底层实际是L1和L2指向同一块空间,因此需要手动写拷贝构造。
            
            
              cpp
              
              
            
          
          		//深拷贝
		//lt2(lt1)
		List(const List<T>& lt)
		{
			//先把原来list里面的数据初始化
			empty_init();
			//把lt1里面的数据一个一个尾插到lt2
			for (const auto& e : lt)
			{
				push_back(e);
			}
		}此时,L1数据的更新不会影响L2:
🎉~List()
在写析构时,我们先要把list里面的数据全部清除,然后再删除头节点的指针并置空。
            
            
              cpp
              
              
            
          
          		~List()
		{
			clear();
			delete _head;
			_head = nullptr;
		}
		void clear()
		{
			auto it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}🎉List<T>& operator=()
            
            
              cpp
              
              
            
          
          		//传值传参
		//lt1=lt3
			// 交换两个list的数据后,这两个list还在,所以用传引用返回
		List<T>& operator=(List<T> lt)//lt3出了当前作用域不销毁,所以用传引用返回
		{
			swap(_head, lt._head);//直接用库里面的函数
			return * this;
		}🎉初始化initializer_list
            
            
              cpp
              
              
            
          
          		List(initializer_list<T> il)
		{
			empty_init();
			for (const auto& e : il)
			{
				push_back(e);
			}
		}四、list 和 vector 的对比
vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同,其主要不同如下:
|-------|--------------------------------------------------------------------|-------------------------------------------|
|       | vector                                                             | list                                      |
| 底层结构  | 动态顺序表,一段连续空间                                                       | 带头结点的双向循环链表                               |
| 随机访问  | 支持随机访问,访问某个元素效率O(1)                                                | 不支持随机访问,访问某个元素效率O(N)                      |
| 插入和删除 | 任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有空能增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低 | 任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1)           |
| 空间利用率 | 底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高                                    | 底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低        |
| 迭代器   | 原生态指针                                                              | 对原生态指针(节点指针)进行封装                          |
| 迭代器失效 | 在插入元素时,要给所有的迭代器进行赋值,因为插入元素可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效 | 插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响 |
| 使用场景  | 需要高效存储,支持随机访问,不关心插入删除效率                                            | 大量插入和删除操作,不关心随机访问                         |
五、list模拟实现的完整代码
            
            
              cpp
              
              
            
          
          #pragma once
#include<iostream>
#include<assert.h>
using namespace std;
namespace xlf
{
	//双链表的定义
	//类模板
	template<class T>
	struct ListNode
	{
		// ListNode<T>*是一个类型 例:int*
		ListNode<T>* _prev; 
		ListNode<T>* _next;
		T _data;
		//构造
		ListNode(const T& data)
			:_prev(nullptr)
			,_next(nullptr)
			,_data(data)
		{}
	};
	//迭代器的第一种写法:
	链表迭代器
	//template<class T>
	//struct ListIterator
	//{
	//	typedef ListNode<T> Node;//给节点取别名
	//	typedef ListIterator<T> Self;//給迭代器取别名
	//	Node* _node;//节点
	//public:
	//	//构造函数
	//	ListIterator(Node* node)
	//		:_node(node)
	//	{}
	//	//对自定义进行运算符的重载,可控制迭代器的行为
	//	Self& operator++()
	//	{
	//		_node = _node->_next;
	//		return *this;
	//	}
	//	Self& operator--()
	//	{
	//		_node = _node->_prev;
	//		return *this;
	//	}
	//	Self operator++(int)
	//	{
	//		Node* temp(*this);
	//		_node = _node->_next;
	//		return temp;
	//	}
	//	Self operator--(int)
	//	{
	//		Node* temp(*this);
	//		_node = _node->_prev;
	//		return temp;
	//	}
	//	bool operator!=(const Self& it)
	//	{
	//		return _node != it._node;
	//	}
	//	bool operator==(const Self& it)
	//	{
	//		return _node == it._node;
	//	}
	//	T& operator*()
	//	{
	//		return _node->_data;
	//	}
	//	T* operator->()
	//	{
	//		return &_node->_data;
	//	}
	//};
	 const_iterator
	链表迭代器
	//template<class T>
	//struct ListConstIterator
	//{
	//	typedef ListNode<T> Node;//给节点取别名
	//	typedef ListConstIterator<T> Self;//給迭代器取别名
	//	Node* _node;//节点
	//public:
	//	//构造函数
	//	ListConstIterator(Node* node)
	//		:_node(node)
	//	{}
	//	//对自定义进行运算符的重载,可控制迭代器的行为
	//	Self& operator++()
	//	{
	//		_node = _node->_next;
	//		return *this;
	//	}
	//	Self& operator--()
	//	{
	//		_node = _node->_prev;
	//		return *this;
	//	}
	//	Self operator++(int)
	//	{
	//		Node* temp(*this);
	//		_node = _node->_next;
	//		return temp;
	//	}
	//	Self operator--(int)
	//	{
	//		Node* temp(*this);
	//		_node = _node->_prev;
	//		return temp;
	//	}
	//	bool operator!=(const Self& it)
	//	{
	//		return _node != it._node;
	//	}
	//	bool operator==(const Self& it)
	//	{
	//		return _node == it._node;
	//	}
	//	const T& operator*()
	//	{
	//		return _node->_data;
	//	}
	//	const T* operator->()
	//	{
	//		return &_node->_data;
	//	}
	//};
//迭代器的第二种写法:
//template 定义的模板参数,只能供当前类或当前函数使用
	//链表迭代器
	template<class T, class Ref, class Ptr>
	struct ListIterator
	{
		typedef ListNode<T> Node;//给节点取别名
		typedef ListIterator<T, Ref, Ptr> Self;//給迭代器取别名
		Node* _node;//节点
	public:
		//构造函数
		ListIterator(Node* node)
			:_node(node)
		{}
		//对自定义进行运算符的重载,可控制迭代器的行为
		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}
		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}
		Self operator++(int)
		{
			Node* temp(*this);
			_node = _node->_next;
			return temp;
		}
		Self operator--(int)
		{
			Node* temp(*this);
			_node = _node->_prev;
			return temp;
		}
		bool operator!=(const Self& it)
		{
			return _node != it._node;
		}
		bool operator==(const Self& it)
		{
			return _node == it._node;
		}
		Ref operator*()
		{
			return _node->_data;
		}
		Ptr operator->()
		{
			return &_node->_data;
		}
	};
	//链表实现
	template<class T>
	class List
	{
		typedef ListNode<T> Node; //为类型取别名
	public:
		迭代器的第一种写法:
		//typedef ListIterator<T> iterator;
		//typedef ListConstIterator<T> const_iterator;
		//迭代器的第二种写法:
		typedef ListIterator<T, T&, T*> iterator;
		typedef ListIterator<T, const T&, const T*> const_iterator;
		iterator begin()
		{
			/*iterator it(_head->_next);
			return it;*/
			return iterator(_head->_next);//匿名对象
		}
		iterator end()
		{
			/*iterator it(_head->_prev);
			return it;*/
			return iterator(_head);//匿名对象
		}
		
		const_iterator begin() const
		{
			/*const_iterator it(_head->_next);
			return it;*/
			return const_iterator(_head->_next);//匿名对象
		}
		const_iterator end() const
		{
			/*const_iterator it(_head);
			return it;*/
			return const_iterator(_head);
		}
		//尾插
		void push_back(const T& x)
		{
			//创建新节点
			Node* newnode = new Node(x);
			//找尾节点
			Node* tail = _head->_prev;
			//连接 tail newnode _head
			tail->_next = newnode;
			newnode->_prev = tail;
			newnode->_next = _head;
			_head->_prev = newnode;
			//insert(end(), x);
		}
		//插入(在pos之前插入)
		iterator insert(iterator pos, const T& x)
		{
			//找到Pos位置的节点
			Node* cur = pos._node;
			//开一个新节点
			Node* newnode = new Node(x);
			//找pos的前一个节点
			Node* prev = cur->_prev;
			//连接  prev  newnode cur
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;
			return iterator(newnode);
		}
		iterator erase(iterator pos)
		{
			//防止删掉哨兵位
			// pos end() 都是迭代器,_head是指针,所以不用
			assert(pos != end());
			//找到pos
			Node* cur = pos._node;
			//pos的前一个节点
			Node* prev = cur->_prev;
			//pos的后一个节点
			Node* next = cur->_next;
			//连接 prev    next
			prev->_next = next;
			next->_prev = prev;
			//删除节点
			delete cur;
			return iterator(next);
		}
		//尾删
		void pop_back()
		{
			erase(--end());
		}
		//头删
		void pop_front()
		{
		    erase(begin());
		}
		//头插
		void push_front(const T& x)
		{
			insert(begin(), x);
		}
		//哨兵位头节点
		void empty_init()
		{
			_head = new Node(T());
			_head->_prev = _head;
			_head->_next = _head;
		}
		//节点初始化
        //双链表有哨兵位
		List()
		{
			//_head = new Node(T());//创建一个T()类型的节点
			//_head->_prev = _head;//节点前后都指向自己
			//_head->_next = _head;
			empty_init();
		}
		//深拷贝
		//lt2(lt1)
		List(const List<T>& lt)
		{
			//先把原来list里面的数据初始化
			empty_init();
			//把lt1里面的数据一个一个尾插到lt2
			for (const auto& e : lt)
			{
				push_back(e);
			}
		}
		~List()
		{
			clear();//清空list里面的数据
			delete _head;//释放头节点
			_head = nullptr;//头节点指针置为空,防止出现野指针
		}
		void clear()
		{
			auto it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}
		//传值传参
		//lt1=lt3
			// 交换两个list的数据后,这两个list还在,所以用传引用返回
		List<T>& operator=(List<T> lt)//lt3出了当前作用域不销毁,所以用传引用返回
		{
			swap(_head, lt._head);//直接用库里面的函数
			return * this;
		}
		List(initializer_list<T> il)
		{
			empty_init();
			for (const auto& e : il)
			{
				push_back(e);
			}
		}
	private:
		Node* _head;
	};
	//按需实例化
	void test_list1()
	{
		List<int> L;
		//实例化就报错
		L.push_back(1);
		L.push_back(2);
		L.push_back(3);
		L.push_back(4);
		List<int>::iterator it = L.begin();
		while (it != L.end())
		{
			*it += 10; // *it 解引用,返回的是这个节点的数据
			           // 此时可以修改这个节点数据的内容
			cout << *it << " ";
			//*it 解引用要的是数值,不是节点,所以运算符重载了operator*()
			++it;
		}
		cout << endl;
		for (auto& e : L)
		{
			cout << e << " ";
		}
		cout << endl;
	}
	struct Pos
	{
		int _row;
		int _col;
		Pos( int row = 0,int col = 0)
			:_row(row)
			,_col(col)
		{}
	};
	void test_list3()
	{
		List<Pos> L;
		L.push_back(Pos(100, 100));
		L.push_back(Pos(200, 200));
		L.push_back(Pos(300, 300));
		List<Pos>::iterator it = L.begin();
		while (it !=L. end())
		{
			cout << it->_row << ":" << it->_col << endl;
			++it;
		}
		cout << endl;
	}
	void Func(const List<int>& lt)
	{
		//List<int>::const_iterator it = lt.begin();
		//while (it!=lt.end())
		//{
		//	//*it += 10; //const迭代器 指向的内容不能改变
		//	cout << *it << " ";//可读
		//	++it;//可遍历
		//}
		//cout << endl;
		List<int>::const_iterator it = lt.begin();
		while (it != lt.end())
		{
			//*it += 10;//const迭代器 指向的内容不能修改
			cout << *it << " ";//可读
			++it;//可遍历
		}
		cout << endl;
	}
	void test_List3()
	{
		List<int> L;
		L.push_back(1);
		L.push_back(2);
		L.push_back(3);
		L.push_back(4);
		L.push_back(5);
		Func(L);
		L.push_front(10);
		L.push_front(20);
		L.push_front(30);
		Func(L);
		L.pop_front();
		L.pop_front();
		Func(L);
		L.pop_back();
		L.pop_back();
		L.pop_back();
		/*L.pop_back();
		L.pop_back();
		L.pop_back();
		L.pop_back();
		L.pop_back();
		L.pop_back();*/
		Func(L);
	}
	void test_List4()
	{
		List<int> L1;
		L1.push_back(1);
		L1.push_back(2);
		L1.push_back(3);
		L1.push_back(4);
		L1.push_back(5);
		Func(L1);
		List<int> L2(L1);
		L1.push_back(6);
		Func(L2);
		Func(L1);
		List<int> L3;
		L3.push_back(1);
		L3.push_back(2);
		L3.push_back(3);
		L1 = L3;
		Func(L1);
		Func(L3);
	}
	void test_List5()
	{
		List<int> L1 = { 1,2,3,4,5,6 };
		Func(L1);
	}
}如若对你有帮助,记得点赞、收藏、关注哦!
若有误,望各位,在评论区留言或者私信我 指点迷津!!!谢谢^ ^ ~




