图像边缘检测Canny

一、Canny边缘检测原理

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。

Canny边缘检测算法是由4步构成:噪声去除计算图像梯度非极大值抑制滞后阈值

1、噪声去除 :由于边缘检测很容易受到噪声的影响,Canny边缘检测噪声处理采用5x5**⾼斯滤波器** 去除噪声。

2、计算图像梯度 :对平滑后的图像使用**Sobel 算子**计算水平方向和竖直方向的⼀阶导数,根据两个一阶导计算边界的梯度和方向。如果像素点是边缘,则其梯度方向总是与边缘垂直。

3、非极大值抑制 :对整幅图像进行扫描,去除那些非边界上的点。对每⼀个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的,若为极大值,则进行保留,否则A点被抑制。

4、滞后阈值 :设置两个值: minVal和 maxVal。当图像的灰度梯度高于 maxVal 时被认为是真的边界,低于 minVal 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。
案例

API:

python 复制代码
canny = cv2.Canny(image, threshold1, threshold2)
image:灰度图
threshold1: minval,较⼩的阈值
threshold2: maxval,较⼤的阈值

示例:

python 复制代码
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']    #定义使其正常显示中文字体黑体
# plt.rcParams['axes.unicode_minus'] = False     #用来正常显示表示负号
# 1 图像读取
img = cv.imread('./image/dog.jpg',0)
# 2 Canny边缘检测
canny = cv.Canny(img,10,100) 
# 3 图像展示
plt.figure(figsize=(10,8))
plt.subplot(121),plt.imshow(img,cmap=plt.cm.gray),plt.title('原图')
plt.xticks([]), plt.yticks([]) #x,y轴置空
plt.subplot(122),plt.imshow(canny,cmap = plt.cm.gray),plt.title('Canny检测后结果')
plt.xticks([]), plt.yticks([])
# 4、保存图像到本地
plt.savefig('canny_detection_result.png')  
plt.show()
相关推荐
游客5208 分钟前
opencv中的各种滤波器简介
图像处理·人工智能·python·opencv·计算机视觉
一位小说男主8 分钟前
编码器与解码器:从‘乱码’到‘通话’
人工智能·深度学习
小俊俊的博客12 分钟前
海康RGBD相机使用C++和Opencv采集图像记录
c++·opencv·海康·rgbd相机
KeyPan12 分钟前
【IMU:视觉惯性SLAM系统】
计算机视觉
7yewh13 分钟前
嵌入式Linux QT+OpenCV基于人脸识别的考勤系统 项目
linux·开发语言·arm开发·驱动开发·qt·opencv·嵌入式linux
深圳南柯电子24 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ25 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉
biter008830 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖36 分钟前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习