图像边缘检测Canny

一、Canny边缘检测原理

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。

Canny边缘检测算法是由4步构成:噪声去除计算图像梯度非极大值抑制滞后阈值

1、噪声去除 :由于边缘检测很容易受到噪声的影响,Canny边缘检测噪声处理采用5x5**⾼斯滤波器** 去除噪声。

2、计算图像梯度 :对平滑后的图像使用**Sobel 算子**计算水平方向和竖直方向的⼀阶导数,根据两个一阶导计算边界的梯度和方向。如果像素点是边缘,则其梯度方向总是与边缘垂直。

3、非极大值抑制 :对整幅图像进行扫描,去除那些非边界上的点。对每⼀个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的,若为极大值,则进行保留,否则A点被抑制。

4、滞后阈值 :设置两个值: minVal和 maxVal。当图像的灰度梯度高于 maxVal 时被认为是真的边界,低于 minVal 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。
案例

API:

python 复制代码
canny = cv2.Canny(image, threshold1, threshold2)
image:灰度图
threshold1: minval,较⼩的阈值
threshold2: maxval,较⼤的阈值

示例:

python 复制代码
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']    #定义使其正常显示中文字体黑体
# plt.rcParams['axes.unicode_minus'] = False     #用来正常显示表示负号
# 1 图像读取
img = cv.imread('./image/dog.jpg',0)
# 2 Canny边缘检测
canny = cv.Canny(img,10,100) 
# 3 图像展示
plt.figure(figsize=(10,8))
plt.subplot(121),plt.imshow(img,cmap=plt.cm.gray),plt.title('原图')
plt.xticks([]), plt.yticks([]) #x,y轴置空
plt.subplot(122),plt.imshow(canny,cmap = plt.cm.gray),plt.title('Canny检测后结果')
plt.xticks([]), plt.yticks([])
# 4、保存图像到本地
plt.savefig('canny_detection_result.png')  
plt.show()
相关推荐
CoderIsArt6 分钟前
三大主流智能体框架解析
人工智能
民乐团扒谱机10 分钟前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Coder_Boy_12 分钟前
Deeplearning4j+ Spring Boot 电商用户复购预测案例中相关概念
java·人工智能·spring boot·后端·spring
芷栀夏15 分钟前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
L5434144616 分钟前
告别代码堆砌匠厂架构让你的系统吞吐量翻倍提升
大数据·人工智能·架构·自动化·rpa
孤狼warrior17 分钟前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
凯子坚持 c18 分钟前
构建企业级 AI 工厂:基于 CANN `cann-mlops-suite` 的端到端 MLOps 实战
人工智能
Elwin Wong20 分钟前
浅析OpenClaw:从“贾维斯”梦想看下一代 AI 操作系统的架构演进
人工智能·agent·clawdbot·moltbot·openclaw
Rorsion21 分钟前
PyTorch实现线性回归
人工智能·pytorch·线性回归
AI资源库22 分钟前
OpenClaw:159K Star的开源AI助手正在重新定义“个人AI“的边界
人工智能·语言模型