图像边缘检测Canny

一、Canny边缘检测原理

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。

Canny边缘检测算法是由4步构成:噪声去除计算图像梯度非极大值抑制滞后阈值

1、噪声去除 :由于边缘检测很容易受到噪声的影响,Canny边缘检测噪声处理采用5x5**⾼斯滤波器** 去除噪声。

2、计算图像梯度 :对平滑后的图像使用**Sobel 算子**计算水平方向和竖直方向的⼀阶导数,根据两个一阶导计算边界的梯度和方向。如果像素点是边缘,则其梯度方向总是与边缘垂直。

3、非极大值抑制 :对整幅图像进行扫描,去除那些非边界上的点。对每⼀个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的,若为极大值,则进行保留,否则A点被抑制。

4、滞后阈值 :设置两个值: minVal和 maxVal。当图像的灰度梯度高于 maxVal 时被认为是真的边界,低于 minVal 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。
案例

API:

python 复制代码
canny = cv2.Canny(image, threshold1, threshold2)
image:灰度图
threshold1: minval,较⼩的阈值
threshold2: maxval,较⼤的阈值

示例:

python 复制代码
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']    #定义使其正常显示中文字体黑体
# plt.rcParams['axes.unicode_minus'] = False     #用来正常显示表示负号
# 1 图像读取
img = cv.imread('./image/dog.jpg',0)
# 2 Canny边缘检测
canny = cv.Canny(img,10,100) 
# 3 图像展示
plt.figure(figsize=(10,8))
plt.subplot(121),plt.imshow(img,cmap=plt.cm.gray),plt.title('原图')
plt.xticks([]), plt.yticks([]) #x,y轴置空
plt.subplot(122),plt.imshow(canny,cmap = plt.cm.gray),plt.title('Canny检测后结果')
plt.xticks([]), plt.yticks([])
# 4、保存图像到本地
plt.savefig('canny_detection_result.png')  
plt.show()
相关推荐
小毅&Nora4 分钟前
【人工智能】【深度学习】 ⑧ 一文讲清Transformer工作原理:从自注意力到大语言模型的革命
人工智能·深度学习·transformer
hjs_deeplearning4 分钟前
应用篇#4:Qwen2视觉语言模型(VLM)的服务器部署
服务器·人工智能·python·深度学习·语言模型
小陈phd6 分钟前
大模型从入门到精通(一)——大语言模型微调的前沿技术与应用
人工智能·语言模型·自然语言处理
InfiSight智睿视界11 分钟前
连锁餐饮管理的“不可能三角”:如何用技术实现规模、效率与体验的平衡?
人工智能
iiiiii1112 分钟前
【论文阅读笔记】FOCAL 离线元强化学习,从静态数据中快速适应新任务
论文阅读·人工智能·笔记·学习·机器学习·学习方法·具身智能
百胜软件@百胜软件17 分钟前
百胜软件×头部影院:以数字之力,重塑影院零售新体验
人工智能
小肖爱笑不爱笑18 分钟前
LSDSSMs: 基于低秩稀疏分解状态空间模型的红外小目标检测网络(2025, TGRS)
人工智能·目标检测·计算机视觉
gallonyin18 分钟前
【AI智能体】Claude Code 工具架构核心解析:大道至简
人工智能·架构·智能体
江上鹤.14818 分钟前
Day 28 复习日
人工智能·python·机器学习