Pytorch中高维度张量理解

Pytorch中高维度张量理解

创建一个tensor

python 复制代码
tensor = torch.rand(3,5,3,2)

结果如下:

python 复制代码
```python
tensor([[[[0.3844, 0.9532],
          [0.0787, 0.4187],
          [0.4144, 0.9552]],

         [[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]],

         [[0.0040, 0.1001],
          [0.3837, 0.6088],
          [0.1752, 0.3184]],

         [[0.2762, 0.8417],
          [0.5438, 0.4406],
          [0.0529, 0.5175]],

         [[0.1038, 0.7948],
          [0.4991, 0.5155],
          [0.4651, 0.8095]]],


        [[[0.0377, 0.0249],
          [0.2440, 0.8501],
          [0.1176, 0.7303]],

         [[0.9979, 0.6738],
          [0.2486, 0.4152],
          [0.5896, 0.8879]],

         [[0.3499, 0.6918],
          [0.4399, 0.5192],
          [0.1783, 0.5962]],

         [[0.3021, 0.4297],
          [0.9558, 0.0046],
          [0.9994, 0.1249]],

         [[0.8348, 0.7249],
          [0.1525, 0.3867],
          [0.8992, 0.6996]]],


        [[[0.5918, 0.9135],
          [0.8205, 0.5719],
          [0.8127, 0.3856]],

         [[0.1870, 0.6190],
          [0.2991, 0.9424],
          [0.5405, 0.4200]],

         [[0.9396, 0.8072],
          [0.0319, 0.6586],
          [0.4849, 0.6193]],

         [[0.5268, 0.2794],
          [0.7877, 0.9502],
          [0.6553, 0.9574]],

         [[0.4079, 0.4648],
          [0.6375, 0.8829],
          [0.6280, 0.1463]]]])

现在我想获取

python 复制代码
tensor[0,0,0,0]

获取第一个维度的第0个元素:

python 复制代码
		[[[0.3844, 0.9532],
          [0.0787, 0.4187],
          [0.4144, 0.9552]],

         [[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]],

         [[0.0040, 0.1001],
          [0.3837, 0.6088],
          [0.1752, 0.3184]],

         [[0.2762, 0.8417],
          [0.5438, 0.4406],
          [0.0529, 0.5175]],

         [[0.1038, 0.7948],
          [0.4991, 0.5155],
          [0.4651, 0.8095]]]

获取第二个维度的第0个元素:

python 复制代码
		[[0.3844, 0.9532],
		  [0.0787, 0.4187],
		  [0.4144, 0.9552]]

获取第三个维度的第0个元素:

python 复制代码
		[0.3844, 0.9532]

获取第四个维度的第0个元素:

python 复制代码
		0.3844

其他情况

tensor[-1]

获取第1个维度的最后一个元素:

python 复制代码
		[[[0.5918, 0.9135],
          [0.8205, 0.5719],
          [0.8127, 0.3856]],

         [[0.1870, 0.6190],
          [0.2991, 0.9424],
          [0.5405, 0.4200]],

         [[0.9396, 0.8072],
          [0.0319, 0.6586],
          [0.4849, 0.6193]],

         [[0.5268, 0.2794],
          [0.7877, 0.9502],
          [0.6553, 0.9574]],

         [[0.4079, 0.4648],
          [0.6375, 0.8829],
          [0.6280, 0.1463]]]

tensor[0,1]

获取第1个维度的第0个元素 :

python 复制代码
		[[[0.3844, 0.9532],
          [0.0787, 0.4187],
          [0.4144, 0.9552]],

         [[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]],

         [[0.0040, 0.1001],
          [0.3837, 0.6088],
          [0.1752, 0.3184]],

         [[0.2762, 0.8417],
          [0.5438, 0.4406],
          [0.0529, 0.5175]],

         [[0.1038, 0.7948],
          [0.4991, 0.5155],
          [0.4651, 0.8095]]]

第2个维度的第1个元素:

python 复制代码
 		[[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]]

tensor[:,1,0,1]

获取第1个维度的所有元素:

python 复制代码
		[[[0.3844, 0.9532],
          [0.0787, 0.4187],
          [0.4144, 0.9552]],

         [[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]],

         [[0.0040, 0.1001],
          [0.3837, 0.6088],
          [0.1752, 0.3184]],

         [[0.2762, 0.8417],
          [0.5438, 0.4406],
          [0.0529, 0.5175]],

         [[0.1038, 0.7948],
          [0.4991, 0.5155],
          [0.4651, 0.8095]]],


        [[[0.0377, 0.0249],
          [0.2440, 0.8501],
          [0.1176, 0.7303]],

         [[0.9979, 0.6738],
          [0.2486, 0.4152],
          [0.5896, 0.8879]],

         [[0.3499, 0.6918],
          [0.4399, 0.5192],
          [0.1783, 0.5962]],

         [[0.3021, 0.4297],
          [0.9558, 0.0046],
          [0.9994, 0.1249]],

         [[0.8348, 0.7249],
          [0.1525, 0.3867],
          [0.8992, 0.6996]]],


        [[[0.5918, 0.9135],
          [0.8205, 0.5719],
          [0.8127, 0.3856]],

         [[0.1870, 0.6190],
          [0.2991, 0.9424],
          [0.5405, 0.4200]],

         [[0.9396, 0.8072],
          [0.0319, 0.6586],
          [0.4849, 0.6193]],

         [[0.5268, 0.2794],
          [0.7877, 0.9502],
          [0.6553, 0.9574]],

         [[0.4079, 0.4648],
          [0.6375, 0.8829],
          [0.6280, 0.1463]]]

第2个维度的第1个元素:

python 复制代码
 		[[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]]

		[[0.9979, 0.6738],
          [0.2486, 0.4152],
          [0.5896, 0.8879]]

		[[0.1870, 0.6190],
          [0.2991, 0.9424],
          [0.5405, 0.4200]]

第3个维度的第0个元素:

python 复制代码
		[0.0713, 0.5281]
		[0.9979, 0.6738]
		[0.1870, 0.6190]

第4个维度的第1个元素:

python 复制代码
		 0.5281
		 0.6738
		 0.6190

最终结果:

python 复制代码
tensor([0.5281, 0.6738, 0.6190])
相关推荐
前端世界5 分钟前
用Python手写一个能识花的感知器模型——Iris分类实战详解
开发语言·python·分类
茶杯67511 分钟前
GraphRAG产品赋能企业智能升级:创邻科技知寰Hybrid RAG的四大核心应用场景深度解析
人工智能·科技·graphrag产品
少林and叔叔13 分钟前
基于yolov5.7.0的人工智能算法的下载、开发环境搭建(pycharm)与运行测试
人工智能·pytorch·python·yolo·目标检测·pycharm
kuan_li_lyg31 分钟前
笛卡尔坐标机器人控制的虚拟前向动力学模型
人工智能·stm32·机器人·机械臂·动力学·运动学·导纳控制
合作小小程序员小小店35 分钟前
旧版本附近停车场推荐系统demo,基于python+flask+协同推荐(基于用户信息推荐),开发语言python,数据库mysql,
人工智能·python·flask·sklearn·推荐算法
却道天凉_好个秋42 分钟前
OpenCV(十四):绘制直线
人工智能·opencv·计算机视觉
动能小子ohhh1 小时前
Langchain从零开始到应用落地案例[AI智能助手]【3】---使用Paddle-OCR识别优化可识别图片进行解析回答
人工智能·python·pycharm·langchain·ocr·paddle·1024程序员节
IT_陈寒1 小时前
Vue 3.4性能优化实战:5个鲜为人知的Composition API技巧让打包体积减少40%
前端·人工智能·后端
数据与人工智能律师1 小时前
数据淘金时代的法治罗盘:合法收集、使用与变现数据的边界与智慧
大数据·网络·人工智能·云计算·区块链
互联网中的一颗神经元1 小时前
小白python入门 - 9. Python 列表2 ——从基础操作到高级应用
java·开发语言·python