Pytorch中高维度张量理解

Pytorch中高维度张量理解

创建一个tensor

python 复制代码
tensor = torch.rand(3,5,3,2)

结果如下:

python 复制代码
```python
tensor([[[[0.3844, 0.9532],
          [0.0787, 0.4187],
          [0.4144, 0.9552]],

         [[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]],

         [[0.0040, 0.1001],
          [0.3837, 0.6088],
          [0.1752, 0.3184]],

         [[0.2762, 0.8417],
          [0.5438, 0.4406],
          [0.0529, 0.5175]],

         [[0.1038, 0.7948],
          [0.4991, 0.5155],
          [0.4651, 0.8095]]],


        [[[0.0377, 0.0249],
          [0.2440, 0.8501],
          [0.1176, 0.7303]],

         [[0.9979, 0.6738],
          [0.2486, 0.4152],
          [0.5896, 0.8879]],

         [[0.3499, 0.6918],
          [0.4399, 0.5192],
          [0.1783, 0.5962]],

         [[0.3021, 0.4297],
          [0.9558, 0.0046],
          [0.9994, 0.1249]],

         [[0.8348, 0.7249],
          [0.1525, 0.3867],
          [0.8992, 0.6996]]],


        [[[0.5918, 0.9135],
          [0.8205, 0.5719],
          [0.8127, 0.3856]],

         [[0.1870, 0.6190],
          [0.2991, 0.9424],
          [0.5405, 0.4200]],

         [[0.9396, 0.8072],
          [0.0319, 0.6586],
          [0.4849, 0.6193]],

         [[0.5268, 0.2794],
          [0.7877, 0.9502],
          [0.6553, 0.9574]],

         [[0.4079, 0.4648],
          [0.6375, 0.8829],
          [0.6280, 0.1463]]]])

现在我想获取

python 复制代码
tensor[0,0,0,0]

获取第一个维度的第0个元素:

python 复制代码
		[[[0.3844, 0.9532],
          [0.0787, 0.4187],
          [0.4144, 0.9552]],

         [[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]],

         [[0.0040, 0.1001],
          [0.3837, 0.6088],
          [0.1752, 0.3184]],

         [[0.2762, 0.8417],
          [0.5438, 0.4406],
          [0.0529, 0.5175]],

         [[0.1038, 0.7948],
          [0.4991, 0.5155],
          [0.4651, 0.8095]]]

获取第二个维度的第0个元素:

python 复制代码
		[[0.3844, 0.9532],
		  [0.0787, 0.4187],
		  [0.4144, 0.9552]]

获取第三个维度的第0个元素:

python 复制代码
		[0.3844, 0.9532]

获取第四个维度的第0个元素:

python 复制代码
		0.3844

其他情况

tensor[-1]

获取第1个维度的最后一个元素:

python 复制代码
		[[[0.5918, 0.9135],
          [0.8205, 0.5719],
          [0.8127, 0.3856]],

         [[0.1870, 0.6190],
          [0.2991, 0.9424],
          [0.5405, 0.4200]],

         [[0.9396, 0.8072],
          [0.0319, 0.6586],
          [0.4849, 0.6193]],

         [[0.5268, 0.2794],
          [0.7877, 0.9502],
          [0.6553, 0.9574]],

         [[0.4079, 0.4648],
          [0.6375, 0.8829],
          [0.6280, 0.1463]]]

tensor[0,1]

获取第1个维度的第0个元素 :

python 复制代码
		[[[0.3844, 0.9532],
          [0.0787, 0.4187],
          [0.4144, 0.9552]],

         [[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]],

         [[0.0040, 0.1001],
          [0.3837, 0.6088],
          [0.1752, 0.3184]],

         [[0.2762, 0.8417],
          [0.5438, 0.4406],
          [0.0529, 0.5175]],

         [[0.1038, 0.7948],
          [0.4991, 0.5155],
          [0.4651, 0.8095]]]

第2个维度的第1个元素:

python 复制代码
 		[[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]]

tensor[:,1,0,1]

获取第1个维度的所有元素:

python 复制代码
		[[[0.3844, 0.9532],
          [0.0787, 0.4187],
          [0.4144, 0.9552]],

         [[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]],

         [[0.0040, 0.1001],
          [0.3837, 0.6088],
          [0.1752, 0.3184]],

         [[0.2762, 0.8417],
          [0.5438, 0.4406],
          [0.0529, 0.5175]],

         [[0.1038, 0.7948],
          [0.4991, 0.5155],
          [0.4651, 0.8095]]],


        [[[0.0377, 0.0249],
          [0.2440, 0.8501],
          [0.1176, 0.7303]],

         [[0.9979, 0.6738],
          [0.2486, 0.4152],
          [0.5896, 0.8879]],

         [[0.3499, 0.6918],
          [0.4399, 0.5192],
          [0.1783, 0.5962]],

         [[0.3021, 0.4297],
          [0.9558, 0.0046],
          [0.9994, 0.1249]],

         [[0.8348, 0.7249],
          [0.1525, 0.3867],
          [0.8992, 0.6996]]],


        [[[0.5918, 0.9135],
          [0.8205, 0.5719],
          [0.8127, 0.3856]],

         [[0.1870, 0.6190],
          [0.2991, 0.9424],
          [0.5405, 0.4200]],

         [[0.9396, 0.8072],
          [0.0319, 0.6586],
          [0.4849, 0.6193]],

         [[0.5268, 0.2794],
          [0.7877, 0.9502],
          [0.6553, 0.9574]],

         [[0.4079, 0.4648],
          [0.6375, 0.8829],
          [0.6280, 0.1463]]]

第2个维度的第1个元素:

python 复制代码
 		[[0.0713, 0.5281],
          [0.0230, 0.8433],
          [0.1113, 0.5927]]

		[[0.9979, 0.6738],
          [0.2486, 0.4152],
          [0.5896, 0.8879]]

		[[0.1870, 0.6190],
          [0.2991, 0.9424],
          [0.5405, 0.4200]]

第3个维度的第0个元素:

python 复制代码
		[0.0713, 0.5281]
		[0.9979, 0.6738]
		[0.1870, 0.6190]

第4个维度的第1个元素:

python 复制代码
		 0.5281
		 0.6738
		 0.6190

最终结果:

python 复制代码
tensor([0.5281, 0.6738, 0.6190])
相关推荐
喵手几秒前
Python爬虫零基础入门【第九章:实战项目教学·第4节】质量报告自动生成:缺失率/重复率/异常值 TopN!
爬虫·python·爬虫实战·python爬虫工程化实战·零基础python爬虫教学·实战项目教学·质量报告自动生成
b2077212 分钟前
Flutter for OpenHarmony 身体健康状况记录App实战 - 个人中心实现
android·java·python·flutter·harmonyos
喵手2 分钟前
Python爬虫零基础入门【第九章:实战项目教学·第7节】增量采集:last_time / last_id 两种策略各做一遍!
爬虫·python·爬虫实战·python爬虫工程化实战·零基础python爬虫教学·增量采集·策略采集
副露のmagic3 分钟前
Transformer架构
人工智能·深度学习·transformer
softshow10266 分钟前
ros2_control
人工智能
cyyt10 分钟前
深度学习周报(1.19~1.25)
人工智能·深度学习
2501_9481201510 分钟前
基于深度学习的遥感图像分类算法研究
人工智能·深度学习·分类
子午13 分钟前
【2026计算机毕设】水果识别分类系统~python+深度学习+人工智能+算法模型+TensorFlow
人工智能·python·深度学习
救救孩子把13 分钟前
61-机器学习与大模型开发数学教程-5-8 约束非线性优化
人工智能·机器学习
yuezhilangniao14 分钟前
AI从“我=I”到“关系计算”:Transformer入门指南-理解疯狂计算关系的Transformer
人工智能·深度学习·transformer