MySQL的索引

索引是对数据库表中一列或多列的值进行排序的一种结构。MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。索引只是提高效率的一个因素,如果你的MySQL有大数据量的表,就需要花时间研究建立最优秀的索引,或优化查询语句。


索引类型

1.普通索引

是最基本的索引,它没有任何限制

语法

1)直接创建索引

sql 复制代码
CREATE INDEX index_name ON table(column(length索引长度))

2)修改表结构的方式添加索引

sql 复制代码
ALTER TABLE table_name ADD INDEX index_name ON (column(length))

3)创建表的时候同时创建索引

sql 复制代码
CREATE TABLE `table` (`id` int(11) NOT NULL AUTO_INCREMENT ,
`title` char(255) CHARACTER NOT NULL ,
`content` text CHARACTER NULL ,
`time` int(10) NULL DEFAULT NULL ,
PRIMARY KEY (`id`),
INDEX index_name (title(length)) )

4)删除索引

sql 复制代码
DROP INDEX index_name ON table

2.唯一索引

索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。

语法

1)创建唯一索引

sql 复制代码
CREATE UNIQUE INDEX indexName ON table(column(length))

2)修改表结构

sql 复制代码
ALTER TABLE table_name ADD UNIQUE indexName ON (column(length))

3)创建表的时候直接指定

sql 复制代码
CREATE TABLE `table` (`id` int(11) NOT NULL AUTO_INCREMENT ,
`title` char(255) CHARACTER NOT NULL ,
`content` text CHARACTER NULL ,
`time` int(10) NULL DEFAULT NULL ,
UNIQUE indexName (title(length)) );

3.主键索引

是一种特殊的唯一索引,一个表只能有一个主键,不允许有空值。一般是在建表的时候同时创建主键索引


4.组合索引(联合索引)

指多个字段上创建的索引,只有在查询条件中使用了创建索引时的第一个字段,索引才会被使用。使用组合索引时遵循最左前缀集合

语法

sql 复制代码
ALTER TABLE `table` ADD INDEX name_city_age (name,city,age);

最左匹配原则


5.全文索引

主要用来查找文本中的关键字,而不是直接与索引中的值相比较。fulltext索引跟其它索引大不相同,它更像是一个搜索引擎,而不是简单的where语句的参数匹配。fulltext索引配合match against操作使用,而不是一般的where语句加like。它可以在create table,alter table ,create index使用,不过目前只有char、varchar,text 列上可以创建全文索引。值得一提的是,在数据量较大时候,现将数据放入一个没有全局索引的表中,然后再用CREATE index创建fulltext索引,要比先为一张表建立fulltext然后再将数据写入的速度快很多。

语法

1)创建表的适合添加全文索引

sql 复制代码
CREATE TABLE `table` (`id` int(11) NOT NULL AUTO_INCREMENT ,
`title` char(255) CHARACTER NOT NULL ,
`content` text CHARACTER NULL ,
`time` int(10) NULL DEFAULT NULL ,
PRIMARY KEY (`id`),FULLTEXT (content) );

2)修改表结构添加全文索引

sql 复制代码
ALTER TABLE article ADD FULLTEXT index_content(content)

3)直接创建索引

sql 复制代码
CREATE FULLTEXT INDEX index_content ON table_name(content)

索引的缺点

虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行insert、update和delete。因为更新表时,不仅要保存数据,还要保存一下索引文件。

建立索引会占用磁盘空间的索引文件。一般情况这个问题不太严重,但如果你在一个大表上创建了多种组合索引,索引文件的会增长很快。

索引只是提高效率的一个因素,如果有大数据量的表,就需要花时间研究建立最优秀的索引,或优化查询语句。


索引注意事项

1.索引不会包含有null值的列

(不推荐在有null值的列上创建索引,可以设置default '')

只要列中包含有null值都将不会被包含在索引中,复合索引中只要有一列含有null值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为null。

2.使用短索引

对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个char(255)的列,如果在前10个或20个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。

3.索引列排序

当引用表的查询包含用以指定索引中键列的不同方向的 ORDER BY 子句时, 指定键值存储在该索引中的顺序很有用. 在这些情况下, 索引就无需在查询计划中使用 SORT 运算符.

4.like语句操作

一般情况下不推荐使用like操作,如果非使用不可,如何使用也是一个问题。like"%aaa%" 不会使用索引而like"aaa%"可以使用索引,第一个字符要是确定的

5.不要在列上进行运算

这将导致索引失效而进行全表扫描,例如

SELECT * FROM table_name WHERE YEAR(column_name)<2017;

6.不使用not in和<>操作

索引可以匹配,不能排除


索引失效

1.有or必全表检索

如果条件都是索引也用到索引

2.复合索引未用左列字段

最左匹配原则:联合索引中,必须使用创建索引时的最左侧列索引数据,索引才会生效

3.like以%_开头

4.需要类型转换

5.where中索引列有运算

6.where中索引列使用了函数

7.如果mysql觉得不需要使用索引

(数据少,全表扫描更快时)


没必要使用索引的情况

1.唯一性差

一个字段的取值只有几种时,的字段不要使用索引

比如性别,只有两种可能数据

2.频繁更新的字段不用(更新索引消耗)

比如logincount登录次数,频繁变化导致索引也频繁变化,增大数据库工作量,降低效率

3.where中不用的字段

如果where后含IS NULL /IS NOT NULL/ like '%输入符%'等条件,不建议使用索引

4.索引使用(不等于)<>时


索引的原理

索引从数据结构上分为哈希索引,另一种是b+树索引

想要理解索引原理必须清楚一种数据结构「平衡树」(非二叉),也就是b tree或者 b+ tree, 主流的RDBMS都是把平衡树当做数据表默认的索引数据结构的。

聚集索引

所有的数据都聚集在主键之下

一个加了主键的表,并不能被称之为「表」。一个没加主键的表,它的数据无序的放置在磁盘存储器上,一行一行的排列的很整齐, 跟我们认知中的「表」很接近。如果给表上了主键,那么表在磁盘上的存储结构就由整齐排列的结构转变成了树状结构,也就是上面说的「平衡树」结构,换句话说,就是整个表就变成了一个索引。没错, 再说一遍, 整个表变成了一个索引,也就是所谓的「聚集索引」。 这就是为什么一个表只能有一个主键, 一个表只能有一个「聚集索引」,因为主键的作用就是把「表」的数据格式转换成「索引(平衡树)」的格式放置。

假如我们执行一个SQL语句:

select * from table where id = 1256;

首先根据索引定位到1256这个值所在的叶结点,然后再通过叶结点取到id等于1256的数据行。 这里不讲解平衡树的运行细节, 但是从上图能看出,树一共有三层, 从根节点至叶节点只需要经过三次查找就能得到结果

事物都是有两面的, 索引能让数据库查询数据的速度上升, 而使写入数据的速度下降,原因很简单的, 因为平衡树这个结构必须一直维持在一个正确的状态, 增删改数据都会改变平衡树各节点中的索引数据内容,破坏树结构, 因此,在每次数据改变时, DBMS必须去重新梳理树(索引)的结构以确保它的正确,这会带来不小的性能开销,也就是为什么索引会给查询以外的操作带来副作用的原因。


非聚集索引

非聚集索引和聚集索引一样, 同样是采用平衡树作为索引的数据结构。

索引树结构中各节点的值来自于表中的索引字段, 假如给user表的name字段加上索引 , 那么索引就是由name字段中的值构成,在数据改变时, DBMS需要一直维护索引结构的正确性

如果给表中多个字段加上索引 , 那么就会出现多个独立的索引结构,每个索引(非聚集索引)互相之间不存在关联。每次给字段建一个新索引, 字段中的数据就会被复制一份出来, 用于生成索引。 因此, 给表添加索引,会增加表的体积, 占用磁盘存储空间。

非聚集索引和聚集索引的区别在于, 通过聚集索引可以查到需要查找的数据, 而通过非聚集索引可以查到记录对应的主键值 , 再使用主键的值通过聚集索引查找到需要的数据


MySQL性能优化

  1. 数据库设计优化:合理设计数据库的表结构,包括选择合适的数据类型、建立索引等。

  2. 查询优化:使用合适的索引、优化查询语句、避免使用不必要的连接、减少子查询的使用等。

  3. 硬件优化:提升服务器硬件性能,如增加内存、优化磁盘性能等。

  4. 缓存优化:利用缓存存储频繁查询的结果,减少数据库的访问。

  5. 配置优化:根据数据库的实际情况,优化MySQL的配置参数,如调整缓存、线程数、连接数等。

  6. 批量操作优化:使用批量操作代替多次单独操作,减少数据库的访问次数。

  7. 分表分区优化:将大表拆分成多个小表,或者将数据按照一定规则分布到多个表中,减少单个表的数据量,提升查询性能。

  8. 定时维护优化:定期进行数据库的维护工作,包括优化表结构、修复表、删除无效数据等。

  9. 防止并发问题:使用事务控制和锁机制来保证数据的一致性和并发性。

  10. 监控优化:使用监控工具来监控数据库性能,及时发现并解决性能问题。

相关推荐
打鱼又晒网8 分钟前
【MySQL】数据库精细化讲解:内置函数知识穿透与深度学习解析
数据库·mysql
大白要努力!13 分钟前
android 使用SQLiteOpenHelper 如何优化数据库的性能
android·数据库·oracle
tatasix1 小时前
MySQL UPDATE语句执行链路解析
数据库·mysql
南城花随雪。1 小时前
硬盘(HDD)与固态硬盘(SSD)详细解读
数据库
儿时可乖了1 小时前
使用 Java 操作 SQLite 数据库
java·数据库·sqlite
懒是一种态度1 小时前
Golang 调用 mongodb 的函数
数据库·mongodb·golang
天海华兮1 小时前
mysql 去重 补全 取出重复 变量 函数 和存储过程
数据库·mysql
gma9992 小时前
Etcd 框架
数据库·etcd
爱吃青椒不爱吃西红柿‍️2 小时前
华为ASP与CSP是什么?
服务器·前端·数据库
Yz98763 小时前
hive的存储格式
大数据·数据库·数据仓库·hive·hadoop·数据库开发