DreamCar运行笔记

文章标题:DreamCar: Leveraging Car-specific Prior for in-the-wild 3D Car Reconstruction

DreamCar,能够在给定少量图像甚至单张图像的情况下重建高质量的3D汽车。为了使生成模型更具泛化性,我们收集了一个名为Car360的汽车数据集,包含超过5600辆汽车。利用这个数据集,我们使生成模型对汽车更加鲁棒。我们使用特定于汽车的生成先验,通过分数蒸馏采样来引导重建。为了进一步补充监督信息,我们利用汽车的几何和外观对称性。

1. 环境配置

1.1. 下载代码

bash 复制代码
git clone https://github.com/xiaobiaodu/DreamCar.git

1.2. 创建环境

conda create -n DreamCar python=3.9

1.3. 安装pytorch

bash 复制代码
sudo apt-get install libjpeg-dev libpng-dev
bash 复制代码
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia

1.4. 安装官方依赖

bash 复制代码
pip install -r requirememnts.txt

1.5. 安装其它依赖

bash 复制代码
pip install rembg envlight nvdiffrast mediapipe clip nerfacc
bash 复制代码
git clone https://github.com/NVlabs/tiny-cuda-nn.git

cd bindings/torch

pip install .
bash 复制代码
git clone https://github.com/NVlabs/nvdiffrast

cd nvdiffrast

pip install .

2. 下载预训练模型

2.1. Dreamcar123

2.2. Omnidata

3. 运行

3.1. 变量定义

bash 复制代码
export image_path="example_data/94b33ce331b844dcb991a2020742cebf"
export id=$(basename "$image_path")
export CUDA_VISIBLE_DEVICES=0

3.2. 预处理数据

bash 复制代码
python preprocess_image.py  "$image_path"

3.3. NeRF

bash 复制代码
python launch.py --train --config configs/dreamcar-coarse-nerf-nuscenes.yaml data.image_path="$image_path" data.random_camera.height=64 data.random_camera.width=64 data.height=64 data.width=64 system.guidance_3d.pretrained_model_name_or_path="load/zero123/dreamcar123.ckpt"   

4. 问题记录

4.1. timm文件下载失败

4.2. Hugging Face文件下载失败

参考文献

https://github.com/xiaobiaodu/DreamCar?tab=readme-ov-file

相关推荐
车轮滚滚__几秒前
uniapp对接unipush 1.0 ios/android
笔记
qq_5290252914 分钟前
Torch.gather
python·深度学习·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
AIGC大时代2 小时前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
云边有个稻草人3 小时前
【优选算法】—复写零(双指针算法)
笔记·算法·双指针算法
人机与认知实验室4 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
靴子学长9 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
海棠AI实验室10 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习