【Tools】Apache Spark 的基本概念和在大数据分析中的应用


我们从不正视那个问题

那一些是非题

总让人伤透脑筋

我会期待

爱盛开那一个黎明

一定会有美丽的爱情

🎵 范玮琪《是非题》


Apache Spark 是一个开源的分布式计算框架,旨在提供快速、通用和易于使用的大数据处理解决方案。它由加州大学伯克利分校的AMPLab 开发,并于2010 年开源。

Spark 提供了一个高级的 API,可以在内存中快速执行大规模数据处理任务,包括数据清洗、数据转换、机器学习和图形处理等。与传统的大数据处理框架相比,如Hadoop MapReduce,Spark 具有更高的性能和更好的可伸缩性,并且支持更广泛的数据处理任务。

Spark 的核心是弹性分布式数据集(Resilient Distributed Datasets,简称RDD)。RDD 是一个分布式的、可容错的数据集,可以在内存中高效计算。RDD 允许用户在计算过程中对数据集进行多次操作,而不必将数据写回磁盘。这种内存计算的特点使得 Spark 在大数据分析中具有更高的速度和效率。

Spark 还提供了许多功能强大的模块,可以用于不同类型的数据处理任务,包括:

  1. Spark SQL:用于处理结构化数据的模块,支持 SQL 查询和数据集的操作。

  2. Spark Streaming:用于实时流处理的模块,可以从各种数据源接收数据流,并进行实时计算和处理。

  3. Spark MLlib:用于机器学习的模块,提供了各种常用的机器学习算法和工具,用于构建和训练机器学习模型。

  4. Spark GraphX:用于图形处理的模块,支持图形算法和图形处理任务,如社交网络分析和推荐系统等。

Spark 的应用范围非常广泛,可以用于各种大数据分析任务,包括数据挖掘、数据探索、实时分析、机器学习和图形处理等。其性能和可伸缩性使得 Spark 成为处理大规模数据的首选框架之一,并且被广泛应用于各种行业,包括金融、电信、医疗、互联网和零售等领域。

相关推荐
广州腾科助你拿下华为认证11 小时前
华为考试:HCIE数通考试难度分析
大数据·华为
在未来等你13 小时前
Elasticsearch面试精讲 Day 17:查询性能调优实践
大数据·分布式·elasticsearch·搜索引擎·面试
大数据CLUB16 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
ratbag67201317 小时前
当环保遇上大数据:生态环境大数据技术专业的课程侧重哪些领域?
大数据
计算机编程小央姐18 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
智数研析社19 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
潘达斯奈基~19 小时前
《大数据之路1》笔记2:数据模型
大数据·笔记
寻星探路20 小时前
数据库造神计划第六天---增删改查(CRUD)(2)
java·大数据·数据库
qingyunliushuiyu20 小时前
BI数据可视化:驱动数据价值释放的关键引擎
数据挖掘·数据分析·数据分析系统·数据分析平台·bi数据可视化
翰林小院21 小时前
【大数据专栏】流式处理框架-Apache Fink
大数据·flink