论文速读|通过人类远程操作的深度模仿学习框架:人型机器人的行走操纵技能

项目地址:Deep Imitation Learning for Humanoid Loco-manipulation through Human Teleoperation

本文详细介绍了 TRILL(Teleoperation and Imitation Learning for Loco-manipulation)框架,它是一个用于人型机器人行走操纵技能训练的深度模仿学习框架。该框架通过 VR 接口收集人类演示数据,并采用整体体控制方法将任务空间命令转换为机器人的关节扭矩,以稳定机器人的动态。TRILL 由三个主要部分组成:一个基于 VR 的远程操作接口、一个整体控制器和一个数据高效的模仿学习算法。研究人员通过模拟和现实中的实验验证了 TRILL 的有效性,并在两个仿真环境(门和工作台)以及现实中的 DRACO 3 人型机器人上进行了部署。实验结果表明,TRILL 在各种行走和操纵任务中的成功率显著高于现有的模仿学习基准方法。此外,研究还探讨了不同的观测和行动空间设计对策略性能的影响,以及不同数据集大小对学习效率的影响。最后,TRILL 在现实中的部 ployment 证明了其在现实世界人型机器人系统中的鲁棒性和实用性。

论文初读:

相关推荐
l1t7 小时前
利用DeepSeek辅助拉取GitHub存储库目录跳过特定文件方法
人工智能·github·deepseek
12344527 小时前
Agent入门实战-一个题目生成Agent
人工智能·后端
IT_陈寒7 小时前
Java性能调优实战:5个被低估却提升30%效率的JVM参数
前端·人工智能·后端
taihexuelang8 小时前
大模型部署
人工智能·docker·容器
轻竹办公PPT8 小时前
2025实测!AI生成PPT工具全总结
人工智能·python·powerpoint
做科研的周师兄8 小时前
【MATLAB 实战】栅格数据 K-Means 聚类(分块处理版)—— 解决大数据内存溢出、运行卡顿问题
人工智能·算法·机器学习·matlab·kmeans·聚类
彼岸花开了吗8 小时前
构建AI智能体:八十一、SVD模型压缩的艺术:如何科学选择K值实现最佳性能
人工智能·python·llm
俞凡8 小时前
AI 智能体高可靠设计模式:去中心化黑板协作
人工智能
kylezhao20198 小时前
Halcon 自带案例(Create_mode_green_dot)讲解
图像处理·人工智能·halcon
AI小怪兽8 小时前
轻量、实时、高精度!MIE-YOLO:面向精准农业的多尺度杂草检测新框架 | MDPI AgriEngineering 2026
开发语言·人工智能·深度学习·yolo·无人机