GFP-GAN容器构建说明

一、介绍

  • GFP-GAN是腾讯在人像复原、超分等方面的佳作 ,其基于 FFHQ 上训练,由 70000 张高质量图像组成。在训练过程中,将所有图像的大小调整为5122。
  • GFP-GAN 是在合成数据上训练的,这些合成数据近似于真实的低质量图像,并在推理过程中推广到真实世界的图像,可用于真实世界面部高清修复。

更多详细信息见Github仓库

二、容器构建说明

GFP-GAN并未自带web交互页面,因此,克隆项目后,安装项目所需环境后,在运行前后需要自行在文件夹中放入和获取相关图片。

1. 依赖关系和安装

#克隆仓库

复制代码
git clone https://github.com/TencentARC/GFPGAN.git
cd GFPGAN

#安装依赖

复制代码
apt-get update
apt-get install -y libgl1 git libglib2.0-0 pyyaml -i https://pypi.tuna.tsinghua.edu.cn/simple

依次安装以下包

复制代码
pip install basicsr
pip install facexlib
pip install -r requirements.txt

运行代码:

复制代码
python setup.py develop

下载模型v1.3版本:

复制代码
wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P experiments/pretrained_models

模型v1.2版本为(可自行选择下载,放置在experiments/pretrained_models中):

复制代码
https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth

2. 进行推理

复制代码
python inference_gfpgan.py -i inputs/whole_imgs -o results -v 1.3 -s 2

推理相关注释:

复制代码
Usage:
python inference_gfpgan.py -i inputs/whole_imgs -o results -v 1.3 -s 2
[options]...
👀️-h                   show this help
👀️-i input             Input image or folder. Default:inputs/whole_imgs
👀️-o output            Output folder. Default: results
👀️-v version           GFPGAN model version. Option: 1 |1.2 | 1.3. Default: 1.3
👀️-s upscale           The final upsampling scale of the image. Default: 2
👀️-bg_upsampler        background upsampler. Default:realesrgan
👀️-bg_tile             Tile size for background sampler,0 for no tile during testing. Default: 400
👀️-suffix              Suffix of the restored faces
👀️-only_center_face    Only restore the center face
👀️-aligned             Input are aligned faces
👀️-ext                 Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
相关推荐
qinyia33 分钟前
Wisdom SSH 是一款创新性工具,通过集成 AI 助手,为服务器性能优化带来极大便利。
服务器·人工智能·ssh
昨日之日20063 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
SEO_juper6 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号6 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha6 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云6 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊6 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint7 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
梁小憨憨7 小时前
zotero扩容
人工智能·笔记
大数据张老师7 小时前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构