GFP-GAN容器构建说明

一、介绍

  • GFP-GAN是腾讯在人像复原、超分等方面的佳作 ,其基于 FFHQ 上训练,由 70000 张高质量图像组成。在训练过程中,将所有图像的大小调整为5122。
  • GFP-GAN 是在合成数据上训练的,这些合成数据近似于真实的低质量图像,并在推理过程中推广到真实世界的图像,可用于真实世界面部高清修复。

更多详细信息见Github仓库

二、容器构建说明

GFP-GAN并未自带web交互页面,因此,克隆项目后,安装项目所需环境后,在运行前后需要自行在文件夹中放入和获取相关图片。

1. 依赖关系和安装

#克隆仓库

git clone https://github.com/TencentARC/GFPGAN.git
cd GFPGAN

#安装依赖

apt-get update
apt-get install -y libgl1 git libglib2.0-0 pyyaml -i https://pypi.tuna.tsinghua.edu.cn/simple

依次安装以下包

pip install basicsr
pip install facexlib
pip install -r requirements.txt

运行代码:

python setup.py develop

下载模型v1.3版本:

wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P experiments/pretrained_models

模型v1.2版本为(可自行选择下载,放置在experiments/pretrained_models中):

https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth

2. 进行推理

python inference_gfpgan.py -i inputs/whole_imgs -o results -v 1.3 -s 2

推理相关注释:

Usage:
python inference_gfpgan.py -i inputs/whole_imgs -o results -v 1.3 -s 2
[options]...
👀️-h                   show this help
👀️-i input             Input image or folder. Default:inputs/whole_imgs
👀️-o output            Output folder. Default: results
👀️-v version           GFPGAN model version. Option: 1 |1.2 | 1.3. Default: 1.3
👀️-s upscale           The final upsampling scale of the image. Default: 2
👀️-bg_upsampler        background upsampler. Default:realesrgan
👀️-bg_tile             Tile size for background sampler,0 for no tile during testing. Default: 400
👀️-suffix              Suffix of the restored faces
👀️-only_center_face    Only restore the center face
👀️-aligned             Input are aligned faces
👀️-ext                 Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
相关推荐
果冻人工智能1 小时前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工1 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz1 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭1 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~1 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11331 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike1 小时前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇1 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow