🌈个人主页:秋风起,再归来~****************************************************************
🔥系列专栏:C++从入门到起飞****************************************************************
🔖克心守己,律己则安
目录
[1.1 什么是适配器](#1.1 什么是适配器)
[1.2 STL标准库中stack和queue的底层结构](#1.2 STL标准库中stack和queue的底层结构)
>前言 :栈和队列的使用非常简单,并且我们在数据结构部分已经运用的非常熟练了,下面我们就来直接剖析它们的底层结构!
1、容器适配器
1.1 什么是适配器
适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设 计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。
1.2 STL标准库中stack和queue的底层结构
虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为 容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认 使用deque,比如:
2、deque的简单介绍(了解)
2.1、deque的原理介绍
deque(双端队列): 是一种双开口的**"连续"**空间的数据结构,双开口的含义是:可以在头尾两端 进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与 list比较,空间利用率比较高。
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个 动态的二维数组,其底层结构如下图所示:
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其"整体连续"以及随机访问 的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:
那deque是如何借助其迭代器维护其假想连续的结构呢?
2.2、deque的缺陷
>与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩 容时,也不需要搬移大量的元素,因此其效率是比vector高的。
>与list比较 ,其底层是连续空间,**高级缓存利用率高!**空间利用率比较高,不需要存储额外字段。
>但是 ,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其 是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实 际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看 到的一个应用就是,STL用其作为stack和queue的底层数据结构。
我们下面做两个简单的测试就可以很清晰的感受到这个缺陷了!
void test_op1()
{
srand(time(0));
const int N = 1000000;
deque<int> dq;
vector<int> v;
for (int i = 0; i < N; ++i)
{
auto e = rand() + i;
v.push_back(e);
dq.push_back(e);
}
int begin1 = clock();
sort(v.begin(), v.end());
int end1 = clock();
int begin2 = clock();
sort(dq.begin(), dq.end());
int end2 = clock();
printf("vector:%d\n", end1 - begin1);
printf("deque:%d\n", end2 - begin2);
}
无论是在测试还是发行版本下,在相同数据下使用相同的排序算法,我们可以看见vector的效率是明显高于deque的!
void test_op2()
{
srand(time(0));
const int N = 1000000;
deque<int> dq1;
deque<int> dq2;
for (int i = 0; i < N; ++i)
{
auto e = rand() + i;
dq1.push_back(e);
dq2.push_back(e);
}
int begin1 = clock();
sort(dq1.begin(), dq1.end());
int end1 = clock();
int begin2 = clock();
// 拷贝到vector
vector<int> v(dq2.begin(), dq2.end());
sort(v.begin(), v.end());
dq2.assign(v.begin(), v.end());
int end2 = clock();
printf("deque sort:%d\n", end1 - begin1);
printf("deque copy vector sort, copy back deque:%d\n", end2 - begin2);
}
这个测试的结果一方面说明了deque的遍历效率是很低的,另一方面也说明了拷贝的代价是很低的!
>为什么选择deque作为stack和queue的底层默认容器
stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性 结构,都可以作为stack的底层容器,比如vector和list都可以;
queue是先进先出的特殊线性数据 结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如 list。
但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:
1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进 行操作。
2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的 元素增长时,deque不仅效率高,而且内存使用率高。 结合了deque的优点,而完美的避开了其缺陷。
3、STL标准库中对于stack和queue的模拟实现
stack和queue的模拟实现就非常简单了,这里直接给源码给大家参考一下!
//适配器container
template<class T,class container=deque<T>>
class stack
{
public:
//元素数量
size_t size() const
{
return con.size();
}
//判空
bool empty()
{
return con.empty();
}
//入栈
void push(const T& val)
{
con.push_back(val);
}
//出栈
void pop()
{
con.pop_back();
}
//取栈顶元素
T& top()
{
return con.back();
}
const T& top() const
{
return con.back();
}
private:
container con;
};
template<class T, class Con = deque<T>>
//template<class T, class Con = list<T>>
class queue
{
public:
void push(const T& x)
{
_c.push_back(x);
}
void pop()
{
_c.pop_front();
}
T& back()
{
return _c.back();
}
const T& back()const
{
return _c.back();
}
T& front()
{
return _c.front();
}
const T& front()const
{
return _c.front();
}
size_t size()const
{
return _c.size();
}
bool empty()const
{
return _c.empty();
}
private:
Con _c;
};
4、完结散花
好了,这期的分享到 这里就结束了~
如果这篇博客对你有帮助的话,可以用你们的小手指点一个免费的赞并收藏起来哟~
如果期待博主下期内容的话,可以点点关注,避免找不到我了呢~
我们下期不见不散~~