ADAS---基于检测框的单目测距方法

1.1.模型求解法方法解读:

Yolo模型可以输出被检测物体的置信度、类别及检测框的中心点坐标*(* x c , y c) 及宽高*(w,h)*等信息,选取车辆检测框底部的中点作为距离测量的特征点,其计算公式如下:

车辆测距示意图如下:

图中,为相机靶面中心点,为相机光心,车载相机安装高度为 H,焦距为 f,俯仰角为β,为 γ,点与光轴投影的夹角为点到点的水平距离,点与图像中心点的垂直距离,为被检测物体参考平面的高度。

计算公式为:

横向距离设为X

模型求解法需要测量相机外参,即

1.2.相似三角形测距之高度估计:

为目标实际高度,通常根据查阅给出经验值,为目标检测框高度,为相机到实际目标的距离,为等效焦距,由实际焦距除以像元尺寸得出。

相似三角形测距,需要提前预设测距目标的实际宽高。

相关推荐
Ryan老房13 小时前
自动驾驶数据标注-L4-L5级别的数据挑战
人工智能·目标检测·目标跟踪·自动驾驶
极智视界2 天前
目标检测数据集 - 自动驾驶场景车辆方向检测数据集下载
人工智能·目标检测·自动驾驶
yuanmenghao2 天前
车载Linux 系统问题定位方法论与实战系列 - OOM 与资源耗尽:系统是如何被“慢慢拖死”的
linux·运维·服务器·网络·驱动开发·自动驾驶
码农三叔3 天前
(9-2-02)自动驾驶中基于概率采样的路径规划:基于Gazebo仿真的路径规划系统(2)
人工智能·机器学习·机器人·自动驾驶·rrt
地平线开发者3 天前
征程 6 算法工具链 | PTQ 深度使用指南
算法·自动驾驶
DuHz3 天前
自动驾驶雷达干扰缓解:探索主动策略论文精读
论文阅读·人工智能·算法·机器学习·自动驾驶·汽车·信号处理
yuanmenghao3 天前
车载Linux 系统问题定位方法论与实战系列 - 开篇: 为什么需要一套“系统化”的 Linux 问题定位方法
linux·运维·服务器·数据结构·c++·自动驾驶
yuanmenghao3 天前
车载Linux 系统问题定位方法论与实战系列 - 系统 reset / reboot 问题定位
linux·服务器·数据结构·c++·自动驾驶
m0_650108244 天前
Diffusion-Planner:基于扩散模型的自动驾驶灵活引导闭环规划
论文阅读·自动驾驶·扩散模型·联合预测与规划建模·分类器引导机制
小康小小涵4 天前
WSL2安装移植到F盘并集成ubuntu20的ros-noetic
人工智能·机器人·自动驾驶