ADAS---基于检测框的单目测距方法

1.1.模型求解法方法解读:

Yolo模型可以输出被检测物体的置信度、类别及检测框的中心点坐标*(* x c , y c) 及宽高*(w,h)*等信息,选取车辆检测框底部的中点作为距离测量的特征点,其计算公式如下:

车辆测距示意图如下:

图中,为相机靶面中心点,为相机光心,车载相机安装高度为 H,焦距为 f,俯仰角为β,为 γ,点与光轴投影的夹角为点到点的水平距离,点与图像中心点的垂直距离,为被检测物体参考平面的高度。

计算公式为:

横向距离设为X

模型求解法需要测量相机外参,即

1.2.相似三角形测距之高度估计:

为目标实际高度,通常根据查阅给出经验值,为目标检测框高度,为相机到实际目标的距离,为等效焦距,由实际焦距除以像元尺寸得出。

相似三角形测距,需要提前预设测距目标的实际宽高。

相关推荐
lihongli0001 小时前
CAN、ROS数据录制与rqt图形化显示
自动驾驶·ros·激光雷达
ARM+FPGA+AI工业主板定制专家17 小时前
基于Jetson+GMSL AI相机的工业高动态视觉感知方案
人工智能·机器学习·fpga开发·自动驾驶
BullSmall1 天前
汽车HIL测试:电子开发的关键验证环节
人工智能·机器学习·自动驾驶
地平线开发者2 天前
手撕大模型 | MQA 和 GQA 原理解析
自动驾驶
地平线开发者2 天前
征程 6 | BPU trace 简介与实操
算法·自动驾驶
Wnq100722 天前
如何在移动 的巡检机器人上,实现管道跑冒滴漏的视觉识别
数码相机·opencv·机器学习·计算机视觉·目标跟踪·自动驾驶
韩曙亮2 天前
【自动驾驶】自动驾驶概述 ⑨ ( 自动驾驶软件系统概述 | 预测系统 | 决策规划 | 控制系统 )
人工智能·机器学习·自动驾驶·激光雷达·决策规划·控制系统·预测系统
IT古董3 天前
【第五章:计算机视觉-计算机视觉在工业制造领域中的应用】1.工业缺陷分割-(1)工业品缺陷风格基础知识:割任务定义、数据集介绍
计算机视觉·3d·自动驾驶
Mr.Winter`3 天前
深度强化学习 | 基于SAC算法的动态避障(ROS C++仿真)
人工智能·深度学习·神经网络·机器人·自动驾驶·ros·具身智能
酌量3 天前
路径平滑优化详解(二次规划): 数学建模与目标函数推导
经验分享·笔记·学习·机器人·自动驾驶