基于yolov8的西红柿缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】

基于YOLOv8的西红柿缺陷检测系统是一个利用深度学习技术的创新项目,旨在通过自动化和智能化的方式提高西红柿缺陷检测的准确性和效率。该系统利用YOLOv8目标检测算法,该算法以其高效性和准确性在目标检测领域表现出色。YOLOv8不仅继承了YOLO系列模型的优势,还引入了新的骨干网络、Anchor-Free检测头以及优化后的损失函数,这些改进使得模型在复杂环境下的检测性能更加优越。

该系统能够实时处理图像、视频和摄像头输入,快速识别并定位西红柿是否成熟,腐烂等。相比传统的人工检测方法,该系统显著提高了检测效率和准确性,降低了人为因素导致的误差,从而减少了资源浪费和损失。

此外,该系统还具备用户友好的界面,支持检测结果的可视化展示和导出,便于用户进行后续分析和处理。同时,系统还支持模型的导入、初始化和参数调整,用户可以根据实际需求进行灵活配置,以达到最佳的检测效果。

综上所述,基于YOLOv8的西红柿缺陷检测系统为农产品质量检测提供了一种高效、准确的解决方案,具有广泛的应用前景和重要的实际意义。

【效果展示】

【测试环境】

windows10

anaconda3+python3.8

torch==1.9.0+cu111

ultralytics==8.2.70

【模型可以检测出类别】

复制代码
Bad
Good
Unripe

【训练信息】

|-----------------|-------|
| 参数 | 值 |
| 训练集图片数 | 6815 |
| 验证集图片数 | 979 |
| 训练map | 95.5% |
| 训练精度(Precision) | 93.6% |
| 训练召回率(Recall) | 91.8% |

【训练数据集】

https://download.csdn.net/download/FL1623863129/89716908

【部分实现源码】

复制代码
class Ui_MainWindow(QtWidgets.QMainWindow):
    signal = QtCore.pyqtSignal(str, str)
 
    def setupUi(self):
        self.setObjectName("MainWindow")
        self.resize(1280, 728)
        self.centralwidget = QtWidgets.QWidget(self)
        self.centralwidget.setObjectName("centralwidget")
 
        self.weights_dir = './weights'
 
        self.picture = QtWidgets.QLabel(self.centralwidget)
        self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))
        self.picture.setStyleSheet("background:black")
        self.picture.setObjectName("picture")
        self.picture.setScaledContents(True)
        self.label_2 = QtWidgets.QLabel(self.centralwidget)
        self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))
        self.label_2.setObjectName("label_2")
        self.cb_weights = QtWidgets.QComboBox(self.centralwidget)
        self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))
        self.cb_weights.setObjectName("cb_weights")
        self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)
 
        self.label_3 = QtWidgets.QLabel(self.centralwidget)
        self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))
        self.label_3.setObjectName("label_3")
        self.hs_conf = QtWidgets.QSlider(self.centralwidget)
        self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))
        self.hs_conf.setProperty("value", 25)
        self.hs_conf.setOrientation(QtCore.Qt.Horizontal)
        self.hs_conf.setObjectName("hs_conf")
        self.hs_conf.valueChanged.connect(self.conf_change)
        self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))
        self.dsb_conf.setMaximum(1.0)
        self.dsb_conf.setSingleStep(0.01)
        self.dsb_conf.setProperty("value", 0.25)
        self.dsb_conf.setObjectName("dsb_conf")
        self.dsb_conf.valueChanged.connect(self.dsb_conf_change)
        self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))
        self.dsb_iou.setMaximum(1.0)
        self.dsb_iou.setSingleStep(0.01)
        self.dsb_iou.setProperty("value", 0.45)
        self.dsb_iou.setObjectName("dsb_iou")
        self.dsb_iou.valueChanged.connect(self.dsb_iou_change)
        self.hs_iou = QtWidgets.QSlider(self.centralwidget)
        self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))
        self.hs_iou.setProperty("value", 45)
        self.hs_iou.setOrientation(QtCore.Qt.Horizontal)
        self.hs_iou.setObjectName("hs_iou")
        self.hs_iou.valueChanged.connect(self.iou_change)
        self.label_4 = QtWidgets.QLabel(self.centralwidget)
        self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))
        self.label_4.setObjectName("label_4")
        self.label_5 = QtWidgets.QLabel(self.centralwidget)
        self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))
        self.label_5.setObjectName("label_5")
        self.le_res = QtWidgets.QTextEdit(self.centralwidget)
        self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))
        self.le_res.setObjectName("le_res")
        self.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(self)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))
        self.menubar.setObjectName("menubar")
        self.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(self)
        self.statusbar.setObjectName("statusbar")
        self.setStatusBar(self.statusbar)
        self.toolBar = QtWidgets.QToolBar(self)
        self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)
        self.toolBar.setObjectName("toolBar")
        self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)
        self.actionopenpic = QtWidgets.QAction(self)
        icon = QtGui.QIcon()
        icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionopenpic.setIcon(icon)
        self.actionopenpic.setObjectName("actionopenpic")
        self.actionopenpic.triggered.connect(self.open_image)
        self.action = QtWidgets.QAction(self)
        icon1 = QtGui.QIcon()
        icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action.setIcon(icon1)
        self.action.setObjectName("action")
        self.action.triggered.connect(self.open_video)
        self.action_2 = QtWidgets.QAction(self)
        icon2 = QtGui.QIcon()
        icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action_2.setIcon(icon2)
        self.action_2.setObjectName("action_2")
        self.action_2.triggered.connect(self.open_camera)
 
        self.actionexit = QtWidgets.QAction(self)
        icon3 = QtGui.QIcon()
        icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionexit.setIcon(icon3)
        self.actionexit.setObjectName("actionexit")
        self.actionexit.triggered.connect(self.exit)
 
        self.toolBar.addAction(self.actionopenpic)
        self.toolBar.addAction(self.action)
        self.toolBar.addAction(self.action_2)
        self.toolBar.addAction(self.actionexit)
 
        self.retranslateUi()
        QtCore.QMetaObject.connectSlotsByName(self)
        self.init_all()

【使用步骤】

使用步骤:

(1)首先根据官方框架https://github.com/ultralytics/ultralytics安装教程安装好yolov8环境,并安装好pyqt5

(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码

yolov8s.onnx模型(提供pytorch模型和所有训练日志)

训练的map,P,R曲线图(在weights\results.png)

测试图片(在test_img文件夹下面)

【源码下载地址】

https://download.csdn.net/download/FL1623863129/89717292

相关推荐
麒羽76013 分钟前
从 YOLOv1 到 YOLOv2
yolo
newxtc2 小时前
【 广州产权交易所-注册安全分析报告-无验证方式导致安全隐患】
开发语言·人工智能·selenium·安全·yolo
weixin_418007602 小时前
用opencv来识别信用卡的号码 Vs 使用yolo+paddleocr
人工智能·opencv·yolo
起个名字费劲死了5 小时前
Pytorch Yolov11目标检测+Android部署 留贴记录
pytorch·yolo·目标检测·安卓
甜辣uu16 小时前
【源码讲解+复现】YOLOv10: Real-Time End-to-End Object Detection
人工智能·yolo·目标检测·nms-free
程序猿小D1 天前
【完整源码+数据集+部署教程】 【运输&加载码头】仓库新卸物料检测系统源码&数据集全套:改进yolo11-DRBNCSPELAN
python·yolo·计算机视觉·目标跟踪·数据集·yolo11·仓库新卸物料检测系统
飞翔的佩奇1 天前
【完整源码+数据集+部署教程】烟叶植株计数与分类系统源码和数据集:改进yolo11-TADDH
python·yolo·计算机视觉·目标跟踪·分类·数据集·yolo11
程序猿小D1 天前
【完整源码+数据集+部署教程】 【零售和消费品&存货】【无人零售】自动售卖机饮料检测系统源码&数据集全套:改进yolo11-KernelWarehouse
python·yolo·计算机视觉·目标跟踪·数据集·yolo11·自动售卖机饮料检测系统
程序猿小D1 天前
【完整源码+数据集+部署教程】 【零售和消费品&存货】条形码检测系统源码&数据集全套:改进yolo11-TADDH
python·yolo·计算机视觉·目标跟踪·数据集·yolo11·条形码检测系统
zy_destiny2 天前
【工业场景】用YOLOv8实现抽烟识别
人工智能·python·算法·yolo·机器学习·计算机视觉·目标跟踪