pytorch张量运算的广播机制

PyTorch 的广播机制(broadcasting)是指在进行张量运算时,自动扩展较小张量的形状以匹配较大张量的形状,使它们能够进行逐元素运算。广播机制避免了手动扩展张量的繁琐过程,并且在不增加内存开销的情况下进行高效计算。

广播规则

  1. 比较张量的形状:从后向前比较两个张量的每个维度(即从最右边的维度开始)。
  2. 维度匹配
    • 如果两个维度相等,则可以进行运算。
    • 如果一个张量在该维度上为 1,另一个张量为任意数值,则形状为 1 的张量会沿着该维度扩展,以匹配另一个张量的形状。
    • 如果两个张量在某个维度上不相等且没有一个是 1,则无法进行广播,运算会抛出错误。

广播机制的示例代码

1. 标量与张量的运算
复制代码
import torch

# 标量和张量相加
scalar = torch.tensor(3)
tensor = torch.tensor([1, 2, 3])

result = scalar + tensor
print(result)  # 输出: tensor([4, 5, 6])
2. 不同形状的张量运算
复制代码
import torch

# 创建两个形状不同的张量
A = torch.tensor([[1, 2, 3], [4, 5, 6]])  # 形状为 [2, 3]
B = torch.tensor([1, 2, 3])              # 形状为 [3]

# B 张量的形状会沿着第一个维度自动扩展为 [2, 3]
result = A + B 
print(result)   # 输出: tensor([[2, 4, 6], [5, 7, 9]])
3. 高维张量的广播
复制代码
import torch

# 形状为 [2, 1, 3]
C = torch.tensor([[[1, 2, 3]], [[4, 5, 6]]])

# 形状为 [3]
D = torch.tensor([1, 2, 3])

# D 张量的形状会沿着第一个和第二个维度扩展为 [2, 1, 3]
result = C + D  
print(result)   # 输出: tensor([[[ 2,  4,  6]], [[ 5,  7,  9]]])
4. 不兼容的张量运算
复制代码
import torch

# 形状为 [2, 3]
E = torch.tensor([[1, 2, 3], [4, 5, 6]])

# 形状为 [2]
F = torch.tensor([1, 2])

# 尝试进行运算将抛出错误,因为 E 和 F 在最后一个维度上不匹配
try:
    result = E + F  # 形状不兼容,会抛出错误
except RuntimeError as e:
    print("Error:", e)

总结

广播机制极大简化了张量运算的代码编写,特别是在处理不同行数和列数的张量时。理解广播机制能够帮助你编写更高效、简洁的代码,并充分利用 PyTorch 的计算能力。

相关推荐
WJ.Polar10 分钟前
Python数据容器-list和tuple
开发语言·python
galaxylove12 分钟前
Gartner发布塑造安全运营未来的关键 AI 自动化趋势
人工智能·安全·自动化
qq_2296441113 分钟前
LucidShape 2024.09 最新
python
强哥之神1 小时前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算
Green1Leaves1 小时前
pytorch学习-9.多分类问题
人工智能·pytorch·学习
花好月圆春祺夏安2 小时前
基于odoo17的设计模式详解---装饰模式
数据库·python·设计模式
kyle~2 小时前
计算机视觉---RealSense深度相机技术
人工智能·数码相机·计算机视觉·机器人·嵌入式·ros·传感器
碣石潇湘无限路2 小时前
【AI篇】当Transformer模型开始学习《孙子兵法》
人工智能·学习
看到我,请让我去学习3 小时前
OpenCV开发-初始概念
人工智能·opencv·计算机视觉
汀沿河3 小时前
8.1 prefix Tunning与Prompt Tunning模型微调方法
linux·运维·服务器·人工智能