pytorch张量运算的广播机制

PyTorch 的广播机制(broadcasting)是指在进行张量运算时,自动扩展较小张量的形状以匹配较大张量的形状,使它们能够进行逐元素运算。广播机制避免了手动扩展张量的繁琐过程,并且在不增加内存开销的情况下进行高效计算。

广播规则

  1. 比较张量的形状:从后向前比较两个张量的每个维度(即从最右边的维度开始)。
  2. 维度匹配
    • 如果两个维度相等,则可以进行运算。
    • 如果一个张量在该维度上为 1,另一个张量为任意数值,则形状为 1 的张量会沿着该维度扩展,以匹配另一个张量的形状。
    • 如果两个张量在某个维度上不相等且没有一个是 1,则无法进行广播,运算会抛出错误。

广播机制的示例代码

1. 标量与张量的运算
复制代码
import torch

# 标量和张量相加
scalar = torch.tensor(3)
tensor = torch.tensor([1, 2, 3])

result = scalar + tensor
print(result)  # 输出: tensor([4, 5, 6])
2. 不同形状的张量运算
复制代码
import torch

# 创建两个形状不同的张量
A = torch.tensor([[1, 2, 3], [4, 5, 6]])  # 形状为 [2, 3]
B = torch.tensor([1, 2, 3])              # 形状为 [3]

# B 张量的形状会沿着第一个维度自动扩展为 [2, 3]
result = A + B 
print(result)   # 输出: tensor([[2, 4, 6], [5, 7, 9]])
3. 高维张量的广播
复制代码
import torch

# 形状为 [2, 1, 3]
C = torch.tensor([[[1, 2, 3]], [[4, 5, 6]]])

# 形状为 [3]
D = torch.tensor([1, 2, 3])

# D 张量的形状会沿着第一个和第二个维度扩展为 [2, 1, 3]
result = C + D  
print(result)   # 输出: tensor([[[ 2,  4,  6]], [[ 5,  7,  9]]])
4. 不兼容的张量运算
复制代码
import torch

# 形状为 [2, 3]
E = torch.tensor([[1, 2, 3], [4, 5, 6]])

# 形状为 [2]
F = torch.tensor([1, 2])

# 尝试进行运算将抛出错误,因为 E 和 F 在最后一个维度上不匹配
try:
    result = E + F  # 形状不兼容,会抛出错误
except RuntimeError as e:
    print("Error:", e)

总结

广播机制极大简化了张量运算的代码编写,特别是在处理不同行数和列数的张量时。理解广播机制能够帮助你编写更高效、简洁的代码,并充分利用 PyTorch 的计算能力。

相关推荐
勤劳的进取家4 分钟前
论文阅读:Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
论文阅读·人工智能·机器学习·语言模型·自然语言处理
THMAIL8 分钟前
大模型0基础开发入门与实践:第8章 “大力出奇迹”的哲学:大语言模型的核心技术揭秘
人工智能·语言模型·自然语言处理
l1t14 分钟前
DeepSeek辅助编写的将xlsx格式文件中sheet1.xml按需分别保留或去掉标签的程序
xml·python·excel·wps·xlsx
l1t22 分钟前
分析xml标签属性和压缩级别对xlsx文件读取解析的影响
xml·开发语言·python·sql·duckdb
这张生成的图像能检测吗27 分钟前
(论文速读)RandAR:突破传统限制的随机顺序图像自回归生成模型
图像处理·人工智能·机器学习·计算机视觉·生成模型·自回归模型
智驱力人工智能1 小时前
智慧工厂烟雾检测:全场景覆盖与精准防控
人工智能·算法·安全·智慧城市·烟雾检测·明火检测·安全生产
Chandler_Song1 小时前
【Python代码】谷歌专利CSV处理函数
开发语言·python·pandas
测试19985 小时前
Web自动化测试:测试用例流程设计
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
山烛9 小时前
矿物分类系统开发笔记(一):数据预处理
人工智能·python·机器学习·矿物分类