BLEU: a Method for Automatic Evaluation of Machine Translation论文解读

基本信息

作者 K Papineni doi
发表时间 2002 期刊 ACL
网址 https://dl.acm.org/doi/pdf/10.3115/1073083.1073135

研究背景

1. What's known 既往研究已证实

N-gram的匹配规则,算出比较译文和参考译文之间n组词的相似的一个占比。

2. What's new 创新点

N-gram和惩罚因子。

3. What's are the implications 意义

对机器翻译进行人工评价耗时,人工价格昂贵。自动机器翻译评估方法可以降低成本,并且评估速度提高。

研究方法

1. n-gram精度

即 P 1 P_{1} P1是5/6, P 2 P_{2} P2是3/5。

其中, C o u n t c l i p Count_{clip} Countclip是预防遇到以下情况:

Max_Ref_Count是该单词在这句参考翻译中的出现次数。

2. BP对句子过短加以惩罚

避免输出有风险的单词,所以我们会把句子变短。但这样做并不是一个好的翻译。所以我们对过短的句子加以惩罚。

c是机器译文的词数,r是参考译文的词数
3. bleu最终计算公式

w是权重,如果采用了4-gram,则w_{n}=1/4。

一个高得分的候选翻译现在必须在长度、单词选择和单词顺序上与参考翻译相匹配。

结果与讨论

  1. bleu翻译评估结构和人工翻译评估相差不大。

个人思考与启发

  1. (某些词在翻译中很重要,某些词相对没那么重要)BLEU给的权重是相同的,因此存在一些问题:一个参考翻译少了重点单词,另一个参考翻译少了普通单词,但BLEU评分相同。
  2. 语言存在许多同义词,参考翻译无法完全涵盖所有同义词,使得正确翻译的bleu分数却很低。
    机器翻译系统的常见评价指标:https://zhuanlan.zhihu.com/p/258207437

重要图

文献中重要的图记录下来

相关推荐
人工智能训练12 分钟前
windows系统中的docker,xinference直接运行在容器目录和持载在宿主机目录中的区别
linux·服务器·人工智能·windows·ubuntu·docker·容器
南蓝23 分钟前
【AI 日记】调用大模型的时候如何按照 sse 格式输出
前端·人工智能
robot_learner26 分钟前
11 月 AI 动态:多模态突破・智能体模型・开源浪潮・机器人仿真・AI 安全与主权 AI
人工智能·机器人·开源
Mintopia1 小时前
🌐 动态网络环境中 WebAIGC 的断点续传与容错技术
人工智能·aigc·trae
后端小张1 小时前
【AI 学习】从0到1深入理解Agent AI智能体:理论与实践融合指南
人工智能·学习·搜索引擎·ai·agent·agi·ai agent
Mintopia1 小时前
🧩 Claude Code Hooks 最佳实践指南
人工智能·claude·全栈
星空的资源小屋1 小时前
极速精准!XSearch本地文件搜索神器
javascript·人工智能·django·电脑
mqiqe1 小时前
【Spring AI MCP】六、SpringAI MCP 服务端 STDIO & SSE
java·人工智能·spring
飞哥数智坊1 小时前
两天一首歌,这个UP主是怎么做到的?
人工智能·aigc
草莓熊Lotso2 小时前
红黑树从入门到进阶:4 条规则如何筑牢 O (logN) 效率根基?
服务器·开发语言·c++·人工智能·经验分享·笔记·后端