BLEU: a Method for Automatic Evaluation of Machine Translation论文解读

基本信息

作者 K Papineni doi
发表时间 2002 期刊 ACL
网址 https://dl.acm.org/doi/pdf/10.3115/1073083.1073135

研究背景

1. What's known 既往研究已证实

N-gram的匹配规则,算出比较译文和参考译文之间n组词的相似的一个占比。

2. What's new 创新点

N-gram和惩罚因子。

3. What's are the implications 意义

对机器翻译进行人工评价耗时,人工价格昂贵。自动机器翻译评估方法可以降低成本,并且评估速度提高。

研究方法

1. n-gram精度

即 P 1 P_{1} P1是5/6, P 2 P_{2} P2是3/5。

其中, C o u n t c l i p Count_{clip} Countclip是预防遇到以下情况:

Max_Ref_Count是该单词在这句参考翻译中的出现次数。

2. BP对句子过短加以惩罚

避免输出有风险的单词,所以我们会把句子变短。但这样做并不是一个好的翻译。所以我们对过短的句子加以惩罚。

c是机器译文的词数,r是参考译文的词数
3. bleu最终计算公式

w是权重,如果采用了4-gram,则w_{n}=1/4。

一个高得分的候选翻译现在必须在长度、单词选择和单词顺序上与参考翻译相匹配。

结果与讨论

  1. bleu翻译评估结构和人工翻译评估相差不大。

个人思考与启发

  1. (某些词在翻译中很重要,某些词相对没那么重要)BLEU给的权重是相同的,因此存在一些问题:一个参考翻译少了重点单词,另一个参考翻译少了普通单词,但BLEU评分相同。
  2. 语言存在许多同义词,参考翻译无法完全涵盖所有同义词,使得正确翻译的bleu分数却很低。
    机器翻译系统的常见评价指标:https://zhuanlan.zhihu.com/p/258207437

重要图

文献中重要的图记录下来

相关推荐
Elastic 中国社区官方博客31 分钟前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
云天徽上1 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
大嘴吧Lucy1 小时前
大模型 | AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现
人工智能·信息可视化·数据分析
艾思科蓝 AiScholar2 小时前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
watersink2 小时前
面试题库笔记
大数据·人工智能·机器学习
计算机软件程序设计2 小时前
NLP自然语言处理中Word2Vec和GloVe概述
自然语言处理·nlp·word2vec
Yuleave2 小时前
PaSa:基于大语言模型的综合学术论文搜索智能体
人工智能·语言模型·自然语言处理
数字化综合解决方案提供商2 小时前
【Rate Limiting Advanced插件】赋能AI资源高效分配
大数据·人工智能
一只码代码的章鱼2 小时前
机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
人工智能·机器学习
周杰伦_Jay3 小时前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer