COI实验室技能:图像到图像的深度学习开发框架(pytorch版)

Basic deep learning framework for image-to-image

这个开发框架旨在帮助科研人员快速地实现图像到图像之间的模型开发。

github连接:https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image

目录

1模型开发

1-1克隆项目到本地

(1)仓库右上角有个绿色'code'按钮,下拉选择download zip。

(2)或者安装了git工具之后,在命令行运行下面指令:

git clone https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image.git

(3)数据集设置

dataset/input/存放输入的数据集;
dataset/label存放标签的数据集;
dataset/test_input存放测试输入的数据集;

1-2深度学习开发

(1)训练image-to-image任务

python main.py --running_name demo

(2)测试image-to-image任务

python main.py --running_name demo --is_training 0 --is_testing 1

(3)测试单张图像

python main.py --is_training 0 --img_path dataset/demo.png

(5)参数解释

--running_name:为每次训练提供一个运行名称,代码会创建相应名称的文件夹保存结果和日志。

注:非常便于网络的多次运行和分析,比如设置一个递增的版本名称,设置循环,可以一次进行重复实验。

--is_train:设置是否训练,默认训练;

--is_test:设置是否测试,默认测试;

--img_path:指定一张测试图像的路径;

(6)查看训练过程

  • log_demo.txt保存了此次训练所使用的配置信息和训练过程信息;
  • weights/demo/best_model.pth保存了验证集loss最小的模型;
  • results/demo/eval/保存了每一步训练时一个batch的推理结果;

(7)其他

在快速训练上,可以使用上述命令行的方法,如果需要细致开发,可以使用vscode或pycharm,使用编译器运行代码。

2环境配置

建议有高配电脑,或者直接使用远程服务器已经配置好的环境。

2-1安装conda

annaconda,自带基础的python库,比较齐全,占用空间会比较大,网址:https://www.anaconda.com/download/

miniconda,纯净版conda命令软件,不自带库,需自行安装,占用空间小,网址:https://docs.anaconda.com/miniconda/

2-2安装pytorch

访问torch官网,直接通过指令进行安装。网址:https://pytorch.org/get-started/locally/

比如:打开cmd,输入:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

3例子

会将参数配置、模型结果、训练epoch的信息记录到日志中;

会保存每一个epoch的验证集结果(第一个batch的),如下图所示的是从严重退化的散射图中恢复出清晰的图像。

相关推荐
阿十六7 分钟前
OUC AI Lab 第六章:基于卷积的注意力机制
人工智能
努力の小熊22 分钟前
基于tensorflow框架的MSCNN-LSTM模型在CWRU轴承故障诊断的应用
人工智能·tensorflow·lstm
AI即插即用25 分钟前
即插即用涨点系列 (八):AMDNet 详解!AAAI 2025 SOTA,MLP 融合多尺度分解(MDM)与 AMS 的涨点新范式。
人工智能·pytorch·深度学习·目标检测·计算机视觉·transformer
脑极体25 分钟前
穿越沙海:中国AI的中东远征
人工智能·搜索引擎
jn1001053732 分钟前
【概念科普】原位CT(In-situ CT)技术详解:从定义到应用的系统梳理
人工智能
禾风wyh1 小时前
(ICLR 2019)APPNP传播用 PageRank,不用神经网络!
人工智能·深度学习·神经网络
Keep_Trying_Go1 小时前
论文STEERER人群计数,车辆计数以及农作物计数算法详解(pytorch)
人工智能·pytorch·python
gzu_011 小时前
基于昇腾 配置pytorch环境
人工智能·pytorch·python
陈 洪 伟1 小时前
AI理论知识系统复习(6):梯度饱和、梯度消失、梯度爆炸
人工智能
云在Steven1 小时前
在线确定性算法与自适应启发式在虚拟机动态整合中的竞争分析与性能优化
人工智能·算法·性能优化