研1日记6

  1. 一般输入参数为batch_size×num_features×height×width

当高度和宽度不一样时,分别计算即可。

2.ReLU函数的表达式为:f(x) = max(0, x)。

3.Pytorch中最大池化层Maxpool的作用说明及实例使用(附代码)-CSDN博客

4.假设x的形状是(A, B, C, D),其中ABCD是各个维度的尺寸。执行x = torch.flatten(x, 1)后,x的新形状将会是(A, B*C*D)。这是因为从第二个维度(索引为1的维度,即B维度)开始,所有后续的维度都被合并成了一个维度。

相关推荐
背心2块钱包邮13 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水13 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊13 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
PixelMind13 小时前
【超分辨率专题】FlashVSR:单步Diffusion的再次提速,实时视频超分不是梦!
深度学习·音视频·超分辨率·vsr
湘-枫叶情缘13 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
噜~噜~噜~13 小时前
偏导数和全导数的个人理解
深度学习·偏导数·梯度·全导数
Aaron158813 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-145513 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
lx74160269814 小时前
change-detection关于llm方向的任务与优化
深度学习
阿杰学AI14 小时前
AI核心知识38——大语言模型之Alignment(简洁且通俗易懂版)
人工智能·安全·ai·语言模型·aigc·ai对齐·alignment