研1日记6

  1. 一般输入参数为batch_size×num_features×height×width

当高度和宽度不一样时,分别计算即可。

2.ReLU函数的表达式为:f(x) = max(0, x)。

3.Pytorch中最大池化层Maxpool的作用说明及实例使用(附代码)-CSDN博客

4.假设x的形状是(A, B, C, D),其中ABCD是各个维度的尺寸。执行x = torch.flatten(x, 1)后,x的新形状将会是(A, B*C*D)。这是因为从第二个维度(索引为1的维度,即B维度)开始,所有后续的维度都被合并成了一个维度。

相关推荐
智慧地球(AI·Earth)27 分钟前
GPT-5.1发布!你的AI更暖更智能!
人工智能·gpt·神经网络·aigc·agi
宁渡AI大模型36 分钟前
从生成内容角度介绍开源AI大模型
人工智能·ai·大模型·qwen
xier_ran1 小时前
深度学习:Mini-Batch 梯度下降(Mini-Batch Gradient Descent)
人工智能·深度学习·batch
Microvision维视智造1 小时前
变速箱阀芯上料易错漏?通用 2D 视觉方案高效破局,成汽车制造检测优选!
人工智能
AAA小肥杨1 小时前
探索K8s与AI的结合:PyTorch训练任务在k8s上调度实践
人工智能·pytorch·docker·ai·云原生·kubernetes
飞哥数智坊2 小时前
TRAE Friends 落地济南!首场线下活动圆满结束
人工智能·trae·solo
m0_527653902 小时前
NVIDIA Orin NX使用Jetpack安装CUDA、cuDNN、TensorRT、VPI时的error及解决方法
linux·人工智能·jetpack·nvidia orin nx
wbzuo2 小时前
Clip:Learning Transferable Visual Models From Natural Language Supervision
论文阅读·人工智能·transformer
带土12 小时前
2. YOLOv5 搭建一个完整的目标检测系统核心步骤
人工智能·yolo·目标检测
1***Q7842 小时前
PyTorch图像分割实战,U-Net模型训练与部署
人工智能·pytorch·python